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ABSTRACT

In this paper we present a signal compression scheme based
on coding linear segments approximating the signal. Al-
though the approach is useful for many types of signals, we
focus in this paper on compression of ElectroCardioGram
(ECG) signals. ECG signal compression has traditionally
been tackled by heuristic approaches. However, it has re-
cently been demonstrated [1] that exact optimization algo-
rithms outclass these heuristic approaches by a wide margin
with respect to reconstruction error. The exact optimiza-
tion algorithm extracts signal samples from the original sig-
nal by formulating the sample selection problem as a graph
theory problem. Thus known optimization theory can be
applied in order to yield optimal compression. This pa-
per generalizes the exact optimization scheme by removing
the interpolation restriction when applying piecewise linear
approximation. This guarantees a lower reconstruction er-
ror with respect to the number of extracted signal samples.
The method shows superior performance compared to tra-
ditional ECG compression methods.

1. INTRODUCTION

Signal compression is an important issue for many types of
signals and applications. Due to the large amount of data
involved in storage and transmission of digital signals it is
an apparent need to compress such signals in order to keep
the amount of data in manageable sizes. The compression
must be done in a way that makes accurate reconstruction of
the signal possible. In this paper we focus on compression
of ECG signals although the method described is a general
scheme applicable to many kinds of signals.

Coding by time domain methods is based on the idea of
extracting a subset ofsignificantsignal samples to represent
the signal. The key to a successful algorithm is a good rule
for determining the most significant samples. Decoding is
based on interpolation in this set.

ECG signal compression, using approximation by piece-
wise linear segments, has traditionally been tackled by heuris-
tic approaches in the sample selection process. Examples of
such algorithms is the popular FAN algorithm [2], the well
known AZTEC algorithm [3] and recently attempts of im-
provements to time domain algorithms, such as SLOPE [4]
and AZTDIS [5]. These algorithms all extract signal sam-
ples based on some heuristic criterion and therefore they are
all suboptimal. As opposed to these algorithms, theCar-
dinality Constrained Shortest Path(CCSP) algorithm pre-
sented in [6] is based on a rigorous mathematical model of
the entire sample selection process. By modeling the sig-
nal samples as nodes in a graph, optimization theory may
be applied in order to achieve the best compression possible
under the given circumstances. In [6] the goal is to min-
imize the reconstruction error given a bound on the num-
ber of samples to be extracted. The samples of the original
signal are modeled as nodes in a directed graph. Any pair
of nodes are connected with an arc, the direction of which
is given from the sample order. Including a particular arc
in our solution corresponds to letting the end nodes of the
arc constitute consecutive samples in the extracted subset of
signal samples. The length of each arc in the digraph can
be defined in a variety of ways. In [6] the length of the arc
connecting two samplesi andj is defined as the contribution
to reproduction error from eliminating all samples betweeni
andj. Defining the problem in this way, minimization of the
reconstruction error can be recognized as solving thecar-
dinality constrained shortest path problemdefined on the
graph.

Reconstruction of a signal compressed by any of the
time domain algorithms mentioned so far is done by lin-
ear interpolation between the elements of the extracted sub-
set of signal samples. This is a simple, but computation-
ally effective way of reconstructing the signal. However,
by applying interpolation between the extracted signal sam-
ples we insist on exact equality between the reconstructed



and the original signal samples at the points of extraction.
This imposes restrictions on the algorithm. Removing this
restriction will give us a higher degree of freedom in ex-
traction of signal samples, and thus hopefully a better rep-
resentation of the original signal. In this paper we therefor
demonstrate how the algorithm in [6] can be further devel-
oped in order to apply to piecewise linearnon-interpolating
approximation.

Applying linear interpolation in the reconstruction phase,
the algorithm in [6] is proven to converge in cubic time.
In [7] it is demonstrated how to cope with real time con-
straints of the algorithm. In this paper it is shown that the
idea presented in [6], and roughly sketched here, can be ap-
plied to the case where piecewise non-interpolative approx-
imation is used in reconstruction of the signal. This is ob-
tained without increasing the computational complexity of
the algorithm.

In the next section the problem is defined in strict math-
ematical terms. Section 3 is devoted to a discussion of en-
coding schemes for the extracted sample points. Finally, ex-
perimental results are reported, and in the concluding sec-
tion different aspects of the method along with directions
for future work are considered.

2. OPTIMIZATION MODEL

Denote the samples taken from an ECG signal at constant
interval byy(1); y(2); :::; y(N). Let M denote the bound
on the number of extracted samples andS denote thesam-
ple setS = fy(1); y(2); :::; y(N)g. Let the starting points
of the straight lines representing the approximated signal be
denoted byz(k). In generalz(k) 6= y(k). We seek an ap-
propriatecompression setC = fn1; :::; nMg and the corre-
sponding approximated sample valuesz(n1); : : : ; z(nM ) to
represent S. Assumen1 = 1 andnM = N . The approxima-
tion is then given bŷy(n) = z(i) + ŷ(j)�z(i)

j�i
(n� i) for all

n 2 [i; j) if j < N , n 2 [i; j] if j = N . In this way we get
a piecewise linear non-interpolating approximation to the
original signal starting inn1 = 1 and ending innM = N .

Define the directed graphG = (V;A) whosevertex set
V = f1; 2; :::; Ng andarc setA contains node pairs(i; j)
wherei; j 2 V and i < j. The set(n1; n2; : : : ; nM ) is
said to be apath from n1 to nM in G if n1; :::; nM 2 V

are distinct vertices andn1 < n2 < � � � < nM . Let Pn
denote the path from node1 up to noden. The length of
each arc(i; j) in A is given as the contribution to the total
reconstruction error by eliminating all nodes betweeni and
j � 1 if j < N and betweeni andj if j = N . This length
can be expressed asc2ij =

Pj�1
n=i(ŷ(n) � y(n))2 if j < N

andc2ij =
Pj

n=i(ŷ(n) � y(n))2 if j = N . The length of
Pn will thus be the sum of the length of all arcs included in
the path up to noden. Each arc(i; j) in A represents the
possibility of lettingi andj be consecutive members ofC.
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Figure 1: Example of a short sequence of original and re-
constructed signal

The parameters describing each straight line segment of
the approximation to the original signal is found by mini-
mizing the expression forc2ij with respect to these parame-

ters. The graphG consists ofN(N�1)
2 arcs. The expression

for c2ij is a sum ofn terms in the worst case. Straightforward
computation of all the arc lengths will thus result in an al-
gorithm with a complexity ofO(N3). Fortunately, this can
be avoided by careful computation of the arc lengths [8].

When all arc lengths are available, we are faced with
the following problem : Minimize the length ofPN under
the constraint thatPN contains no more thanM vertices.
This problem is solved by a dynamic programming algo-
rithm thoroughly described in [6].

3. ENCODING SCHEME

In general we need three parameters for each segment of
the signal in order to describe the piecewise linear non-
interpolation approximation uniquely. The exact optimiza-
tion algorithm described in Section 2, represents each linear
segment of the signal between nodesnk andnk+1 by the
approximated sample valuesz(nk) andz(nk+1�1) in addi-
tion to the run length,r(nk) = nk+1�nk. This is shown in
Figure 1. Before entropy coding, we change the representa-
tion of the line segments slightly. The approximated sample
values representing the end of one line segment and the start
of the next one is replaced by its mean, i.e.,zmid(nk+1) =
z(nk+1�1)+z(nk+1)

2 , and the distance between the mean and
the approximated sample values, i.e.,�(nk+1) = z(nk+1 �
1)�zmid(nk+1) = zmid(nk+1)�z(nk+1). This will lower
the dynamic range of the parameters to be encoded as com-
pared to encoding all the approximated sample values di-
rectly. We thus have three parameters to be encoded for
each segment of the signal:r(nk); zmid(nk) and�(nk). We
apply separate entropy coders for each of these parameters.



The FAN algorithm [2] is a well known time domain
compression method. In comparison with other time do-
main coders, it has been reported to give high compression
ratio, in addition to producing reconstructed signals with
high fidelity [9]. We compare the results from the FAN al-
gorithm to the linear non-interpolating exact optimization
techniques described in the preceding pages. We also com-
pare the results from the method described in this paper
to the linear interpolating exact optimization algorithm de-
scribed in [1, 6]. Both the linear interpolation exact opti-
mization method and the FAN algorithm approximates the
signal by linear line segments represented by one extracted
sample value and one run per segment of the signal. These
parameters are encoded by two separate entropy coders.

4. NUMERICAL EXPERIMENTS

For evaluation of the performance of the coders described in
Section 3, the commonly usedPercentage Root Mean Dif-
ferenceis applied:

PRD =

vuut
PN

l=1[y(l)� ŷ(l)]2PN

l=1[y(l)� �y]2
� 100% (1)

wherey is the mean value of the original signaly, ŷ is the
reconstructed signal andN is the original signal length. We
evaluate the PRD as a function ofbit rate = average number
of bits used to represent one signal samplein the original
signal. The PRD performance measure is useful for testing
the relative performance of the coding techniques. How-
ever, as each compression method has its own distortion
characteristic, the PRD should be supplemented by visual
inspection of the reconstructed signal.

Several recordings taken from the MIT [10] database
were applied in the coding experiments. We present results
for two test signals: mit100 1000 and mit207 1800. Here
“mitxxx yyyy” denotes record number xxx starting at time
yy:yy. Each total record time is ten minutes, corresponding
to 216 000 samples. The sampling frequency is 360 Hz with
12 bits per sample. The signal mit100 1000 is normal sinus
rhythm while mit207 1800 is abnormal ventricular rhythm.

Figure 2 presents obtained PRD’s for the coders for bit
rates between 0.2 and 1.8 bits per sample (bps). For both
test signals, the FAN method is outperformed by both the
CCSP methods by a wide margin. At low bit rates (around
0.6 bps) the FAN algorithm has from 40 % to 130 % higher
PRD than the CCSP algorithm based on piecewise linear
non-interpolating approximations. At higher rates (around
1.0 bps) the difference is smaller, but still significant.

For test signal mit1001000, the CCSP method based
on linear interpolation gives slightly lower PRD’s than the
non-interpolating approach for bit rates below 0.3 bps. For
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Figure 2: Bit rate versus PRD for test signal mit1001000
and test signal mit2071800

bit rates between 0.3 and 0.5 bps, the non-interpolating ap-
proach performs significantly better than the interpolation
approach. For all other bit rates the linear non-interpolating
approximation method performs slightly better than the lin-
ear interpolation approach in terms of PRD. For test signal
mit207 1800 the CCSP method based on linear interpola-
tion performs slightly better than the non-interpolation ap-
proach for bit rates below 0.4 bps. For all other bit rates it
is the other way around.

Side information has not been taken into account in the
rate-distortion curves of Figure 2. When applying the en-
coding technique chosen here, we assume that we are either
using fixed tables in the encoding and decoding part of the
system or coding on a block-adaptive basis.

Evaluation of the performance of the different coders
should be accompanied by visual inspection of the recon-
structed signals. This is to show coding artifacts as they
appear for the different coders. We have chosen a short seg-
ment of the mit1001000 signal. The reconstructed signal is
shown at a bit rate of 1.0 bps in Figure 3. The original sig-
nal is also included. We see that all coders smooth out some
of the details in the original signal. This is particularly ev-
ident for the FAN coder, where the linear line pieces are
also most prominent in the reconstructed signal. Between
the coders evaluated here, the CCSP coder using linear non-
interpolating approximations produces a reconstructed sig-
nal with highest fidelity based on visual inspection.
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Figure 3: Reconstructed signal segment (taken from mit1001000) at 1 .0 bps.

5. CONCLUSIONS

This paper demonstrates how the optimal time-domain coder
presented in [6, 8] can be further developed in order to use
piecewise non-interpolatingapproximation in the reconstruc-
tion of the signal. This is done without increase in the com-
putational complexity of the algorithm.

Our compression algorithm is based on combinatorial
optimization theory. By the very nature of our approach
the distortion is guaranteed to be the smallest possible of all
techniques using piecewise linear approximation, given the
number of retained curve points.

Coding experiments show that the optimal time domain
coders have significantly higher performance than other well
known time domain compression methods. This is validated
by evaluation of the coders based on PRD and verified by vi-
sual inspection of the reconstructed signal. The CCSP algo-
rithm based on piecewise non-interpolating approximations
has slightly higher performance than the CCSP algorithm
based on linear interpolation for bit rates above 0.3 - 0.4
bps.

In this paper we have considered piecewise linear non-
interpolating approximation in compression of ECG signals.
The results show that there is a potential for such algo-
rithms. In [8] second order polynomials are applied in re-
construction of the signal. Incorporation of second order
polynomials into the non-interpolating approximation ap-
proach may result in algorithms with even better results than
the ones obtained by the exact optimization algorithms so
far. Development of such algorithms is left as a topic for
future research.
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