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ABSTRACT

This paper proposes simultaneous decoding using multiple ut-
terances to derive one or more allophonic transcriptions for each
word. Three possible simultaneous decoding algorithms, namely
the N-best-based algorithm, the forward-backward-based algorithm
and the word-network-based algorithm, are outlined. The pro-
posed word-network-based algorithm can incrementally decode a
transcription from any number of training utterances. Speech recog-
nition experiments for both known and unknown word vocabular-
ies show up to 16% reduction in word error rate when simultane-
ously decoded allophonic transcriptions are added to the recogni-
tion dictionaries. This result holds even for dictionaries originally
transcribed by expert phoneticians.

1. INTRODUCTION

One way to improve speech recognition accuracy is to optimize
pronunciation dictionary [1]. A data-driven approach is preferred
to a knowledge-based or human-transcription-based approach for
many reasons. Manual transcriptions are time consuming and in
general very expensive. The words have to be re-transcribed every
time we move from one dialect to another. Theoretically, it should
be possible to accurately transcribe words spoken in a new dialect
by data-driven approach using a few sample utterances of the word
from that dialect.

One important issue in data-driven pronunciation modeling is
how to transcribe words or phrases as a sequence of allophones
that best represent the spoken utterances. Given a set of allophone
acoustic models, the sequence of allophones that best represent
one utterance can be easily obtained by performing a continuous
allophone recognition for that utterance with biphone or triphone
constraints. However, the resulting allophone sequence obtained
from one utterance is frequently erroneous and the use of such
an erroneous allophone sequence leads to low recognition accu-
racy. In order to obtain consistently high-quality transcriptions,
we require multiple utterances of the word or phrase to derive one
transcription.

Instead of recognizing each utterance as an allophone sequence
independently, maximum joint likelihood approaches have been
proposed [2][3] to get one transcription from several utterances.
The idea is to use thea priori information that these utterances
correspond to the same allophone sequence. In [2], the best tran-
scription is selected from a set of transcription candidates which
are generated by decoding each utterance individually. In [3], the
optimalbaseformtranscription is obtained by recognizing input ut-
terances simultaneously. In our experiments we see that the data-
driven transcriptions represent closely the regional dialects when

we use several utterances from that region to generate these tran-
scriptions.

We discuss several implementations of the simultaneous de-
coding algorithms. In addition to the N-best and the forward-
backward based algorithms, a word-network-based simultaneous
decoding algorithm is also presented. This novel algorithm incre-
mentally decodes a transcription from any number of utterances of
the word or phrase. These transcriptions are then used in various
speech recognition experiments. Up to 16% reduction in word er-
ror rate is obtained when simultaneously decoded allophonic tran-
scriptions are added to the recognition dictionaries.

2. SIMULTANEOUS DECODING ALGORITHMS

The goal of a simultaneous decoding algorithm is to find one opti-
mal allophone sequenceW � for all input utterancesU1; U2; � � �Un.
According to theBayescriterion,W � should be computed as

W
�

= argmaxW pfW jU1; U2; :::; Ung

= argmax
W

pfU1; U2; :::; UnjWgpfWg

= argmax
W

pfU1jWgpfU2jWg � � � pfUnjWgpfWg

Several methods can be used to search for a solution for the
above optimization problem. Three methods are discussed in the
following sections.

2.1. The N-best based algorithm

Probably the simplest method to perform simultaneous decoding
is to use the N-best based approach. In this algorithm, an N-best
search algorithm [4][5] is used to generate an individual N-best list
for each input utterance independently. These individual N-best
lists are merged and rescored using all the input utterances [2]. The
transcriptions are then re-ordered based on their joint likelihoods.
However, our experience is that this solution is sub-optimal unless
N is very large.

2.2. The forward-backward algorithm

The tree-trellis search algorithm [5] can be easily modified to per-
form simultaneous decoding for multiple input utterances (the sa-
me algorithm was used in [3]). The basic idea is to perform a for-
ward Viterbi beam search for each utterance independently, then
apply a combined backwardA� search [6] for all the utterances
simultaneously.

In the forward searches, scores for optimal partial paths from
the beginning node to each within-beam grammar node are stored



at each frame for each utterance. These forward scores are then
used as the heuristics in evaluating incomplete paths for each ut-
terance in the backward search. In the combined backward search,
a theory is evaluated by summing the log likelihood of evaluat-
ing the same theory for each utterance independently. SinceA�

search extends the partial theory with the highest evaluation score,
each partial theory extension in the combined backward search is
optimal for all utterances.

The algorithm is admissible but not exact since the heuristics
used in evaluating incomplete paths in theA� search is the upper
bound on the score of actually extending a common partial theory
to the beginning node of the search grammar for all utterances. The
major drawback of this algorithm is that it needs to store forward
scores for all input utterances. When the number of utterances to
be simultaneously decoded is large, the memory requirement may
not be manageable.

2.3. The word-network-based algorithm

In order to perform simultaneous decoding for large number of in-
put utterances, a word-network-based algorithm is developed. The
algorithm involves four steps:

1. Create an allophonic network for the word or phrase to be
transcribed. To keep the algorithm computationally simple,
we create an allophonic graph with n+1 nodes, where n is
the maximum possible phonemes in any possible transcrip-
tion of the word or phrase.

2. Score the allophonic network for each utterance indepen-
dently. Each arc in the allophonic network is associated
with a score corresponding to the highest scoring complete
path passing through this arc. There are a few efficient ways
of scoring this network. For example, the arcs can be scored
by a graph search algorithm [7] or by the search algorithm
outlined in [8].

3. Merge these individually scored allophonic networks to form
an allophonic network scored jointly from all the utterances.
The arc scores in the jointly scored allophonic network are
the sum of the log likelihoods of the corresponding arc scores
in the individual allophonic networks.

4. Find an optimal path through the combined allophonic net-
work. The optimal path is the complete path with the high-
est summed log likelihood through the arcs in the path.

This algorithm is computationally very efficient since main-
taining a combined allophone network requires only a small amount
of memory and constructing an optimal path through the com-
bined allophonic network is very fast. Furthermore, The com-
bined allophonic network can be constructed incrementally. That
is, once the individual allophonic network for theith utterance
Ui is constructed, the combined allophonic network can be up-
dated and the simultaneously decoded allophonic sequence for ut-
terancesU1; U2; � � � ; Ui can be obtained. This combined allo-
phonic network can possibly be used to constrain the search space
of the next input utteranceUi+1.

3. EXPERIMENTS

3.1. Transcription generation for unknown words

In this experiment, the vocabulary of the speech recognition sys-
tem was specified by the user in the enrollment process. The recog-

nition system had no knowledge about the orthography of user-
defined words. Two enrollment utterances were used to define a
dictionary entry.

Experimental data was collected from 28 households in a 5
month period through public telephone network. In each house-
hold, dictionary entries were enrolled and used by several users.
Various speech and non-speech background noises were observed
in both enrollment and recognition utterances. In order to make
the recognition task artificially difficult, we incorporated a lot of
mismatch conditions. Different kinds of telephone sets (including
normal phones, speaker phones and cord-less phones) were used
in the data collection even in the same household. Users might use
one telephone set(s) for enrollment and other telephone set(s) for
recognition. Entries enrolled by one user might also be used by
other users. Enrollment environment might be different from the
recognition environment.

The data set contains 10,132 same-speaker test utterances (i.e.,
utterances were spoken by speakers who enrolled the correspond-
ing dictionary entries) and 1,104 cross-speaker test tokens. The
average dictionary size of these households is 17. The acoustic
model contains 373 English allophones. MFCC features (7 cep, 7
delta cep and delta energy) were used in these experiments. Frame
synchronous cepstrum mean subtraction was applied in the front-
end processing.

Table 1 shows the recognition rates for various systems using
different methods to obtain the transcriptions for user-defined dic-
tionary entries.

system same speaker cross speaker

I: top 1 90.6% 80.7%
II: top 2 91.0% 81.1%
III: averaging 91.2% 81.2%
IV: simul. decoding 91.1% 83.5%
V: human transcribed 89.9% 84.2%

Table 1: Recognition rates using user-trained dictionary

In the baseline system I, a continuous allophone recognition
using fully-connected allophone search network was performed
independently for each enrollment utterance. The best allophone
sequence from the recognizer was stored in the dictionary. Each
dictionary entry thus had two transcriptions. System II used top
two choices from the allophone recognizer, so four transcriptions
were used to represent each dictionary entry in the system. From
Table 1, we can see that using more transcriptions obtained from
the two enrollment utterances results in only a small performance
gain.

In addition to the two transcriptions used in the baseline sys-
tem, System III added another transcription generated from an ar-
tificial averageutterance [2] for each dictionary entry. The acous-
tic features of this artificial utterance are the Gaussian means of
the single-density state observation functions of an HMM word
model. These Gaussian means were trained using the two enroll-
ment utterances. As can be seen from Table 1, adding this ad-
ditional transcription results in the same recognition accuracy as
using four transcriptions per entry (System II).

System IV also used three transcriptions to represent one entry.
However, the third transcription is generated by recognizing two
enrollment utterances simultaneously using the forward-backward



algorithm. Although the performance improvement for the same-
speaker utterances for System IV is the same as the one using ei-
ther System II or System III, the simultaneously decoded transcrip-
tions in System IV achieved significant cross-speaker performance
improvement (14.5% error reduction compared with the baseline
system).

For comparison purposes, Table 1 also shows recognition per-
formance of human transcriptions. In System V, two human ex-
perts transcribed enrollment utterances into phoneme sequences.
Phonemic transcriptions were automatically transformed into al-
lophonic transcriptions according to the decision tree rules from
which the allophone units were defined.

As can be see from Table 1, for same-speaker utterances, data-
driven transcriptions in systems I-IV consistently out-performed
human transcriptions. This is probably due to the fact that data-
driven transcriptions are optimized at the allophone level using the
same acoustic model as the one used during recognition. Further-
more, transcriptions directly estimated from speech samples seem
to capture detailed information on how a speaker-specific pronun-
ciation evolves. For example, we observed that one phoneme in
a human transcription was expanded to a sequence of different al-
lophones of the same phoneme in the data-driven transcription.
Such speaker-specific pronunciation information improves same-
speaker recognition, but degrades cross-speaker recognition. The
effectiveness of simultaneously decoded transcriptions in cross-
speaker environment is illustrated in Table 1. The performance
difference between System IV and System V for the cross-speaker
utterances is very small.

Table 2 shows transcriptions of the English nameDENNIS
generated from two utterances both independently and simultane-
ously. The last row shows manual transcription for comparison
purposes. In the transcriptions, non-numerical characters repre-
sent phoneme labels, while the numbers following the phoneme
labels are the allophone indices.

utterance 1 [d6�0n17�2s4h4]
utterance 2 [d6æ2d13�4s3s17]

utterances 1 & 2 [d6�0n17�4s4]
human transcription [d3�0n17�1s4]

Table 2: Transcriptions of English name DENNIS generated from
two utterances independently and simultaneously.

3.2. Transcription generation for known words

The idea here is to see if a dictionary transcribed by phoneticians,
when augmented with data-driven transcriptions, will result in im-
proved recognition accuracy. We tested this idea in a speaker-
independent speech recognition system. The words in the dictio-
nary were transcribed manually by phoneticians or through letter-
to-phoneme rules. All the frequently occuring words were tran-
scribed manually, while some less frequent words were by letter-
to-phoneme rules. Additional data-driven transcriptions for the
frequent words were added to this dictionary in order to capture
regional pronunciation variations.

We used the word-network-based algorithm to generate tran-
scriptions automatically from training utterances as shown in Fig-
ure 1.

training tokens

?

group utterances

?

generate transcriptions

Figure 1: Process of generating automatic transcriptions

Training utterances of a word are clustered into a few groups,
generating one transcription per group. The grouping could ei-
ther be data driven or heuristic. In the experiments mentioned
here, either no grouping was performed or the grouping was based
heuristically on male/female distinction. All the recognition ex-
periments used gender-independent acoustic models. We imposed
a minimum limit of ten utterances for generating one data-driven
transcription.

For each orthography, we built an allophonic network for tran-
scription generation as follows:

1. Create a phoneme network from all the phonemic transcrip-
tions of the word (or phrase) in the dictionary. The gener-
ated network is a graph with n+1 nodes, where n is the max-
imum number of phonemes in any transcription. Shorter
transcriptions are represented by including null transitions
between nodes. The graph overgenerates in most cases. The
major constraints this graph imposes are the maximum and
minimum number of phonemes in the transcription.

2. For each phoneme arc in the network, create parallel arcs
for all phonemes which are in the same confusable class as
the current phoneme.

3. Replace each phoneme arc by parallel allophonic arcs cor-
responding to all possible allophones of the phoneme.

Many different methods may be used to define phoneme con-
fusable classes used in step 2 above. In the following experiments,
the confusable classes were based on the phonological features.
We used 12 phoneme classes: high front vowel, high back vowel,
rounded middle vowel, unrounded middle vowel, low back vow-
els, glides, liquids, nasal consonants, voiceless fricatives, voiced
fricatives, voiceless stops, voiced stops.

Table 3 shows the incremental simultaneously decoded tran-
scriptions from utterances of a French phraseR�eno D�epôt. As
can be seen from the table, the simultaneously decoded allophone
transcription converged to the dictionary transcription (not only the
same phoneme sequence but also the same allophone sequence)
after 12 utterances. We have observed that for most words or
phrases, this convergence is normal. We see a transcription differ-
ent from that in the dictionary when one allophone of a phoneme
is substituted for another allophone of the same phoneme, or when
the word or phrase has a frequent regional pronunciation different
from those in the dictionary. Table 4 shows a few words for which
a new phonemic transcription (different from that in the dictionary)
was generated.

Table 5 shows speech recognition accuracy for a recognition
task containing 2200 French phrases in the dictionary. Adding
automatically generated transcriptions for frequent words reduces
error rate by 7% for gender-independent transcriptions, and by
16.7% for gender-dependent transcriptions.

Table 6 reports recognition accuracy for a recognition task
containing 1200 English phrases. As in the French recognition



No. of utterances decoded transcription

1 [r47 œ10 n19 o6 b16 e22 p24 o23]
2 [r47 e10 n19 ˜o3 b16 e22 p24 o23]
3 [r47 e10 n9 ˜o9 b16 e22 p24 o23]
4 [r47 e10 n19 ˜o9 b16 e22 p24 o20]
5 [r47 e10 n19 o16 b16 e22 p24 o23]
6 [r47 e10 n19 o16 b16 e22 p24 o23]
7 [r47 e10 n19 o16 d24 e22 p24 o23]
8 [r47 e10 n19 o16 d24 e22 p24 o23]
9 [r47 e10 n19 o16 d24 e22 p24 o23]
10 [r47 e10 n19 o16 d24 e22 p24 o23]
11 [r47 e10 n19 o16 d24 e22 p24 o23]
12 [r47 e10 n19 o16 d28 e22 p24 o23]
13 [r47 e10 n19 o16 d28 e22 p24 o23]
14 [r47 e10 n19 o16 d28 e22 p24 o23]
15 [r47 e10 n19 o16 d28 e22 p24 o23]
16 [r47 e10 n19 o16 d28 e22 p24 o23]
17 [r47 e10 n19 o16 d28 e22 p24 o23]

Table 3: Incremental simultaneous decoding results for phrase
R�eno D�epôt. The dictionary transcription is [r47 e10 n19 o16
d28 e22 p24 o23].

phrase dictionary transcription new transcription

Gazette Classified [g�z�tklæs�f�jd] [g�z�tkl�s�f�jd]
Mediterraneo [m�d�t�renio] [m�d�t�r�nio]

[m�d�t�rænio]
Le Biftheque [leb*ft�k] [l�bift�k]

[lebift�k]
Royal bank [r=j�lbæ8k] [rwelbæ8k]
Hydro Quebec [h�jdrokwib�k] [h�jdrok�b�k]

[h�jdrokeb�k]

Table 4: Examples of new phonemic transcriptions created by
simultaneous decoding algorithm for English phrases. The allo-
phone numbers are left out for simplicity.

task, adding automatically generated gender-independent transcrip-
tions improved recognition accuracy by 9% before model adapta-
tion, and by 13.5% after model adaptation.

4. SUMMARY

Generating allophonic transcriptions from multiple utterances us-
ing simultaneous decoding algorithms improves recognition accu-
racy. Both speaker-dependent and speaker-independent recogni-
tion systems benefit from these algorithms. The recognition im-
proves for both known words and unknown words, even for dictio-
naries transcribed by expert phoneticians. The simultaneous de-
coding algorithms could possibly be used for transcribing multiple
input utterances in other situations where the system hasa priori
knowledge that these utterances contain the same linguistic infor-
mation.

experiment condition recognition rate error red.

original dictionary 85.6% -
add gender-indep. auto. trans. 86.6% 6.9%
add gender-dep. auto. trans. 88.0% 16.7%

Table 5: French speech recognition results

experiment condition recognition rate error red.

original dictionary 72.6% -
add auto. trans. 75.0% 8.8%

model adaptation 73.8% 4.4%
model adapt. + auto. trans. 76.3% 13.5%

Table 6: English speech recognition results
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