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ABSTRACT
Halftoning is a process that deliberately injects noise into the orig-
inal image in order to obtain visually pleasing output images with
a smaller number of bits per pixel for displaying or printing pur-
poses. In this paper, a novel inverse halftoning method is proposed
to restore a continuous tone image from the given halftone image.
A set theoretic formulation is used where three sets are defined us-
ing the prior information about the problem. A new space domain
projection is introduced assuming the halftoning is performed with
error diffusion, and the error diffusion filter kernel is known. The
space domain, frequency domain, and space-scale domain projec-
tions are used alternately to obtain a feasible solution for the in-
verse halftoning problem which does not have a unique solution.

1. INTRODUCTION

Halftoning refers to the problem of rendering continuous-tone
(contone) images on display and printing devices which are ca-
pable of reproducing only a limited number of colors. Halftoning
techniques are used to overcome the contouring problem encoun-
tered when direct quantization is applied. Widely used halfton-
ing technique is the error diffusion which works by distributing
the previous quantization errors to neighboring pixels. Inverse
halftoning is the problem of recovering a contone image from a
given halftone image. Contone images are needed in many practi-
cal applications. However, inverse halftoning problem is ill-posed
because halftoning is a many-to-one mapping, and does not a have
a unique solution [1]. Therefore, incorporation of all available in-
formation significantly improves the quality of the solution. Our
work is motivated by the fact that set theoretic formulation is ide-
ally suitable for the inverse halftoning problem that has many fea-
sible solutions.

The previous inverse halftoning methods employ space-domain
operations, frequency-domain operations, or both, or only space-
scale domain operations. The simplest approach is lowpass fil-
tering the halftone image to remove the high-frequency compo-
nents where the halftoning noise is mostly concentrated. Different
lowpass filters have been used such as halfband lowpass in [1],
Gaussian lowpass and lowpass filtering based on singular value
decomposition (SVD) [2]. However, lowpass filtering alone does
not work well since this also destroys high-frequency information
of the original image.

A projection algorithm, which is essentially an error diffusion
with an additional inverse quantization step is proposed in [1], us-
ing a maximum a posteriori probability (MAP) projection. A sim-
ilar method [3], based on a MAP estimator is proposed where a
constrained optimization is solved using iterative techniques.

Xiong, Orchard, and Ramchandran [5] proposed an inverse
halftoning scheme using wavelets. The idea behind the wavelet

decomposition of a halftone image is to selectively choose useful
information from each subband. This approach can be considered
as a space-scale domain method. No a priori knowledge about the
halftoning process is assumed.

The method of Projection Onto Convex Sets (POCS) is used in
[4, 2] where information known about the problem is expressed in
the form of two constraint sets. In [2, 4], the halftoning process is
assumed to be known a priori. Based on this information and the
smoothness of most natural images convex sets are defined. The
iterative restoration algorithm is developed by making successive
projections onto the convex sets. The first set is the set of all con-
tone images when halftoned produce the halftone image that we
have, and the second is the set of all images bandlimited to a cer-
tain low-pass band. The computational cost of the space-domain
projection in [2] turns out to be very high.

In this paper, a new inverse halftoning method based on the
method POCS is proposed. Space, frequency, and space-scale (or
wavelet) domain projections are used which take advantage of the
prior knowledge about the error diffusion filter kernel, and the rel-
atively smooth character of the natural images. The simulation
results are presented, and it is experimentally observed that higher
quality images can be obtained compared to [2, 1, 5].

2. A SET THEORETIC INVERSE HALFTONING

In our inverse halftoning algorithm, we define three kinds of sets
describing the prior information that we have. The setC 1;s con-
tains all contone images that result in an observed error diffused
pixel at the indexs. The setC 1 =

T
s
C 1;s is the set of all con-

tone imagesx producing the observed error diffused imagey .
The setC 2 contains all band-limited contone images. Finally, the
setC 3 contains all the images having the same significant Wavelet
Transform (WT) local extrema as the original image. These sets
are shown to be convex in [6].

The POCS based iterative algorithm starts with an initial esti-
matex 0, which is successively projected onto the setsC 1;s,C 2

andC 3, as follows

x `+1 = (P1;0 � : : : � P1;L � P2 � P3)x `; ` = 0; 1; 2; :::

whereP1;s represents the spatial projection which will be de-
scribed in the next subsection, (L is the total number of pixels in
the image),P2 represents lowpass filtering which is the frequency-
domain projection, andP3 represents the wavelet-domain space-
scale projection which can be implemented using the algorithm
described in [10]. All three projections, or any two can be used al-
ternately. The algorithm is globally convergent to a solution which
is in the intersection of all the convex sets regardless of the initial
estimate, and the order of the projections is immaterial [7]. The



iterations are stopped when the difference between the signals at
successive iterations become insignificant.

2.1. A New Space-domain Projection

The block diagram of error diffusion encoder is given in Figure 1.
The inverse halftoning problem can be stated as follows: Given
the halftoned imagey and the 2-D FIR error diffusion filter kernel
h , we want to estimate the original imagex . The variableu ,
which is the input to the quantizer plays a significant role because
the uniform quantization operatorQ determines the bounds onu
for each output pixely (s).
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Figure 1: Block diagram of error diffusion method.

Writing the equations for the error diffusion system in Figure 1,
we get,

e = u � y (1)

u = x + h � e (2)

(I � h ) � u = x � h � y : (3)

The imageu can be expressed in terms of imagesx andy as

u = (I � h )�1 � [x � h � y ]: (4)

Here� denotes the convolution operation, andx is the estimate
obtained at each iteration. The kernels for the FIR filtersh and
I � h are given in Figure 2.
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Figure 2: Kernels for the filtersh andI � h .

For convenience, we define

�x = x � h � y : (5)

The 2-D IIR inverse filterw = (I�h)�1 can be approximated
by a 2-D FIR filter using a method described in [8] for inverse
filtering for image restoration. The size of the filterw is chosen
asm1 �m2 (= 50� 51 in our simulations).

The pixelu (s) = (w � �x )(s) can be represented asu (s) =P
k2Fv

v (k; s) �x (k), wherev is the mask corresponding to the
filter w , andFv is the support of the maskv . For convenience,
1-D indexing is used, although the blocks�x in Fv, and the mask
v are 2-D signals. We use the information at our hand to form a
constraint on the image�x as follows:

if (y (s) = 0 and u (s) � �q) or (y (s) = 255 and u (s) < �q)

then
X
k2Fv

v (k; s) �x (k) = �q (6)

where�q is 128 in the case of the binary quantizer. Equation (6) is
a hyper-plane, therefore it is a convex set.

The projection onto the setC 1;s can be carried out as follows.
Let �x p be the current iterate. The next iterate�x p+1 is obtained
by solving the optimization problem:

min k �x p+1 � �x p k
2 subject to (6): (7)

Using Lagrange multipliers method for this constrained minimiza-
tion problem, we write

L =k �x p+1 � �x p k
2 +�(

X
k2Fv

v (k; s) �x p+1(k)� �q): (8)

Equating partial derivatives ofL with respect to�x p+1 and� to 0,
and rearranging them gives the projection operation

�x p+1 = �x p + �

�
�q �

P
k
v (k; s) �x p(k)P

k
v (k; s)2

�
v (9)

where� is a relaxation parameter and if it remains between 0 and
2, the convergence of the POCS procedure is assured [7].

The projection given in (9) is performed pixel by pixel involving
the block defined by the causal maskv in the image�x . Block size
is equal to the support size of the inverse filterw . Once we obtain
the corrected image�x , we get the new estimatex from (5).

This scheme can be easily extended to the case of multi-level
error-diffusion in which the quantizer is not binary. In this case, the
imageu is quantized toK gray levels by error-diffusion coding,
and we want to obtain full gray-scale image. Here,

A (s) � u(s) � B (s)
A (s) �

P
k2Fv

v (k; s) �x (k) � B (s) (10)

where the matricesA andB define the quantizer bounds corre-
sponding to the sampleu (s). For the binary quantizer,A (s) =
u low(s) = 0, andB (s) = u high(s) = 128� � for the output 0,
andA (s) = u low(s) = 128, andB (s) = u high(s) = 255 for
the output 255. For a multi-level uniform quantizer,u low(s) and
uhigh(s) are determined according to the quantizer bounds. If the
sampleu (s) does not satisfy the bounds in (10) then the current
iterate�x p is updated so that the next iterate�x p+1 satisfies it using
Equation (9). In the multi-level case,�q is chosen as follows

if
X
k

v (k; s) �x p(k) < u low(s) =) �q = u low(s):

if
X
k

v (k; s) �x p(k) > u high(s) =) �q = u high(s):

This space-domain projection is different from the space-domain
projection described in [2] in two aspects: (i) the convex sets that
we define are different from the set defined in [2], and (ii) [2] is
developed for a sigma-delta type error diffusion algorithm whereas
our method is developed for the widely used Floyd-Steinberg error
diffusion method. Due to the nature of our convex sets,C1;s, the
projection operation described in Eq. (9) is very simple to imple-
ment. This leads to a computationally more efficient reconstruc-
tion algorithm because, in each iteration of the POCS algorithm
we do not update the entire image as in [2] but we modify only the
pixels that do not meet the requirements.



2.2. Frequency-domain Projection

An important property of most natural images is smoothness
compared to artificial images. This information can be im-
posed into the restoration process in the form of lowpass filter-
ing. Therefore, the frequency-domain projection consists of ban-
dlimiting the observed signal in some way. The simplest ap-
proach is lowpass filtering the image in order to remove the high-
frequency components of the image, which contain mostly halfton-
ing noise. For the frequency-domain projection, we either use

a simple Gaussian lowpass filterg(n1; n2) = k e
�
n
2
1
+n2

2

2�2 , for
�3 � n1; n2 � 3, wherek is a scaling factor used to make
the DC gain of the filter unity. The�2 controls the bandwidth
of the lowpass filter. Or we use lowpass filters with passbands of
[��=2; �=2]� [��=2; �=2], [�2�=3; 2�=3]� [�2�=3; 2�=3],
or [�3�=4; 3�=4]� [�3�=4; 3�=4].

2.3. Space-scale Domain Projection

The edges in an image produce local WT extrema in the space-
scale domain [9]. It is proved that the wavelet extrema informa-
tion correspond to convex sets inL22 which is the set of square
summable images [9, 10, 11]. Therefore, the edge information can
be used in the reconstruction algorithm by properly defining a set
corresponding to the significant local extrema in the wavelet do-
main. Let the setC 3, contain all the images having the same
significant WT local extrema as the original image. The key idea
is to estimate the edges of the original image from the halftoned
image by selecting the significant WT extrema of the halftoned
image, and the restored image is forced to have the same extrema
in the wavelet space-scale domain. This provides the sharpness
to the restored image by protecting the significant high frequency
components of the image, whereas a simple lowpass filtering char-
acterized by setC 2 will smooth out all of the sharp edges of the
original image. The projection onto this set can be carried out as
described in [10]. Another approach is to use the wavelet-based
single step inverse halftoning method [5]. Although this method
can not be considered as an orthogonal projection due to the cross-
scale correlation operation, it is relatively easy to implement and
can be incorporated to the iterative restoration procedure. In [5],
important high frequency information describing the signal, par-
ticularly information in edge regions, are retained by choosing
the WT extrema locations selectively from each subband result-
ing from the wavelet decomposition of the halftoned image. In our
iterative restoration algorithm this method is used as an initial step.

3. SIMULATION RESULTS

To demonstrate the performance of our POCS-based inverse
halftoning method, we present some simulation results with512�
512 Peppers and Zelda images. We compare the new method
with some state-of-the-art inverse halftoning techniques in terms
of their PSNRs. In the first group of simulations, we use space-
domain and frequency-domain projections alternately. The first
estimate of the contone image,x 1 is obtained by lowpass filtering
the input halftone image,x 0 with g(n1; n2). Then we perform
our spatial projections. After that, we again use lowpass filter-
ing, and go on in an alternating fashion. A section of the original
8 bpp Zelda image error-diffused to 1 bpp is shown in Figure 3.
The initial estimate image with PSNR=32.85 dB, i.e. after the first

frequency-domain projection, and the result of the two set of itera-
tions with PSNR=33.37 dB are given in Figure 4, and Figure 5 re-
spectively. The resulting image is quite sharp, and its visual qual-
ity is high. The details are restored while much of the halftoning
noise existing in the first estimate is removed. The quality of the
restoration of the detail regions can be observed around the eyes
and mouth.

We compare our results with those in [2] in Table 1 for the Lena
image. The PSNR improvement achieved by the proposed method
is about 0.8 dB higher than the ones in [2], and the image quality
is higher.

Apart from the binary error diffusion coding, we carried out
simulation studies for images error-diffused to 2 bpp as shown in
Figure 6 for the Zelda image. We use our method tailored for the
multi-level case. The PSNR improvement over the initial estimate
is about 0.6 dB with our POCS based method after two set of it-
erations, and our restoration results in a quite sharp, and faithful
reproduction as can be seen in Figure 7 (PSNR=35.39 dB).

We can use wavelet-based space-scale domain projection in [5]
as the initial estimate in our method. The resulting image after
applying our method is shown in Figure 8 for the Peppers image
(PSNR=30.90 dB). Even after a single set of iteration, i.e. by ap-
plying our space-domain projections following wavelet-based pro-
jection in [5], our space-domain projections achieves around 0.5
dB improvement over the initial estimate.

Comparison of the POCS-based method with other existing
methods are given in Table 2 for the Peppers and Lena images.
Our method results in a higher PSNR than the other two methods
in [1, 5] for both of the images.

Halftoned color images can also be restored using the proposed
method. Our spatial projection for the multilevel halftoning case
can be applied to color images where each color pixel takes values
from the color palette of limited size such as 8, 16, or more. By
using the constraint in (6) for each color pixel, we find the two
closest colors from the palette, and we project each color vector
to the closest color by simply scaling its each color component
red, green, and blue. As a second method to color image inverse
halftoning, we do inverse halftoning only on the luminance com-
ponent of the color image. Then the inverse halftoned image is
obtained together with the lowpass filtered versions of the chromi-
nance components.

Some sample simulation results of the work presented in this
paper can be viewed at http://www4.ncsu.edu/�gbozkur.

4. CONCLUSIONS

In this paper, a new set theoretic inverse halftoning method to re-
store the continuous tone images from their halftone versions is in-
troduced. Prior information about the error diffusion process and
the original image is modeled as convex sets. The original im-
age is assumed to be in the intersection of these convex sets onto
which successive projections are made in our iterative restoration
algorithm. The iterates converge to a feasible solution. It is experi-
mentally observed that the restored image has a higher PSNR than
the other methods existing in the literature.
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[2] (GLPF) [2] (SVD) Our Method (GLPF, LPF)

29.4 30.4 31.23

Table 1: Comparison of PSNRs (dB) for the inverse halftoning
methods in [2], and our method for the Lena Image. The (GLPF,
LPF, SVD) denotes the type of frequency-domain projection.

Method[1] Method [5] Our Method

Lena (PSNR) 32.00 31.67 32.17
Peppers (PSNR) 30.30 30.69 30.90

Table 2: Comparison of inverse halftoning methods. All methods
assume the error diffusion kernel is known.
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Figure 3: Zelda image error-diffused to 1 bbp.
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Figure 4: First estimate (PSNR=32.85 dB).
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Figure 5: Restored Zelda image (PSNR=33.37 dB).
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Figure 6: Zelda image error-diffused to 2 bbp.
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Figure 7: Restored Zelda image (PSNR=35.39 dB).
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Figure 8: Restored peppers image (PSNR=30.90 dB).


