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ABSTRACT

We consider the detection in the presence of 1=f noise
of a known transient signal of unknown amplitude, scale
and delay. We introduce a generalized likelihood ratio test
(GLRT) method based on pattern matching in the undec-
imated discrete wavelet transform (UDWT) domain. In
many cases, the computational complexity of the detector
can be reduced with minimal performance impact by lim-
iting the pattern matching operations to locations in the
UDWT domain that correspond to the existence of trans-
form local maxima. As examples of our approach, we sim-
ulate the detection of transients that are modeled either by
scaling functions, Gaussian functions, or two-sided expo-
nential functions.

1. INTRODUCTION

Wavelet transforms have been widely applied to the prob-
lem of transient detection and processing, primarily because
the transform basis functions provide good time localiza-
tion [1, 2, 3]. A number of detection methods have been
proposed that involve the tracking of local transform max-
ima across analysis scales [3, 4]. These techniques rely on
the observation that the evolution of the transform maxima
across scales provides a measure of the local regularity of
the signal [3]. Other proposed detectors have been based on
standard detection theory. Frisch and Messer [2] observed
that the wavelet transform acts as bank of matched �lters,
and can therefore be used as a generalized likelihood ratio
test (GLRT) detector for transients modeled by wavelets
in the presence of white noise. For transients of unknown
shape, GLRT detectors that form the detection statistic in
the wavelet domain have also been discussed [1, 5]. For
a transient with known parameters in 1=f Gaussian noise,
Wornell [6] described a matched �lter detector in the Dis-
crete Wavelet Transform (DWT) domain. This detector
relies on the observation that the DWT acts as an approx-
imate whitening transform for 1=f noise.

In this paper we introduce a GLRT detector for a known
transient signal of unknown amplitude, scale and delay pa-
rameters in 1=f Gaussian noise. Such a detector is widely
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applicable because 1=f power spectra have been observed
in a broad range of physical processes [6].

The proposed method utilizes pattern matching in the
Undecimated Discrete Wavelet Transform (UDWT) domain
and is the shift invariant extension of the scheme presented
in [6]. The computational cost of the method can be signi�-
cantly reduced by limiting the matching operations to those
locations in the UDWT where the local maxima propagate
across scales. Monte Carlo simulations are used to compute
the receiver operating characteristics (ROC) for transients
modeled by scaling functions, Gaussian functions, and two-
sided exponential functions. The simulation results indi-
cate that the reduction in computational complexity can
be achieved with negligible impact on detector performance.
Futhermore, this work helps to explain how maxima track-
ing algorithms can be understood within the framework of
detection theory.

2. NOTATION

We use the notation  (t) to represent wavelets and the

subscript notation  m(t) = 2�m=2 (2�mt) and  m;n(t) =

2�m=2 (2�mt � n) for wavelets at other scales. The in-
ner product of two functions is de�ned as hf(t); g(t)i =R1
�1

f(t)g�(t)dt where g� is the complex conjugate of g.

The DWT of a signal x(t) is Xm;n = hx(t);  m;n(t)i.
The choice of time origin for the basis functions  m;n(t) is
arbitrary, and we de�ne other DWT's with basis functions
 m;n(t� J) and the notation

X [J]
m;n = hx(t); m;n(t� J)i: (1)

If M denotes the largest analysis scale of interest, then

the X
[J]
m;n are invariant to shifts by integer multiples of

2M , i.e. X
[J]
m;n = X

[J�2M ]

m;n+2(M�m) . As a result there are 2M

unique DWT shifts, with each shift giving rise to a dif-
ferent decomposition of the signal x(t). The UDWT is
~Xm;n = hx(t); m(t� n)i. Note that the UDWT is a shift

invariant transform, i.e. x(t� j) ) ~Xm;n�j .

3. THEORY

We consider the detection of a transient with unknown am-
plitude, scale, and delay. We have the standard hypothesis



test
H0 : x(t) = v(t)
H1 : x(t) = Ask;l(t) + v(t)

where A, k, and l are the unknown amplitude, scale, and de-
lay, respectively, of the transient, and we assume that A > 0
and k and l are integers. We de�ne sk;l(t) = 2
k=2�k(t � l)

where �k(t) = 2�k=2�(2�kt) and �(t) is the signal model.
The additive noise v(t) is assumed to be a 1=f
 Gaussian
random process.

A standard scheme for detection with unknown param-
eters is the generalized likelihood ratio test GLRT [2, 7]. It
has the form: choose H1 if the likelihood ratio r(x(t)) > r1
where

r(x(t)) =
maxfA;k;lg p (x(t)jA;k; l;H1)

p (x(t)jH0)

and r1 is a threshold value chosen to achieve a desired prob-
ability of false alarm (PFA), and choose H0 otherwise.

Detection in 1=f noise is based on the observation by
Wornell and others ([6] and references therein) that the
DWT acts as an approximate whitening transform for 1=f


noise processes. If v(t) represents the noise process with

power spectrum
�2v
f


, then the DWT coe�cients Vm;n are ap-

proximately uncorrelated with variance �2w2

m where �2w =

��2v and � is a function of the wavelet and parameter 
.
We consider �rst the detection problem with known sig-

nal parameters in order to develop some ideas that will be
useful in understanding the unknown parameter case. Fol-
lowing Wornell [6], we note that the equivalent hypothesis
test in the DWT domain is

H0 : X
[0]
m;n = V

[0]
m;n

H1 : X
[0]
m;n = AS

[0];fk;lg
m;n + V

[0]
m;n

(2)

where A, k and l are known parameters, X
[J]
m;n was de�ned

in (1), and S[J];fk;lg
m;n = hsk;l(t);  m;n(t�J)i. The likelihood

ratio is

p
�
X

[0]jH1

�
p (X[0]jH0)

=

Q
m;n

exp

 
�
�
X

[0]
m;n�AS

[0];fk;lg
m;n

�2
2�2w2
m

!

Q
m;n

exp

 
�
�
X

[0]
m;n

�2
2�2w2
m

! (3)

where X[J] = fX [J]
m;ng is the vector of observations.

We can simplify (3) to obtain the su�cient test statistic

�(X) =
P

m;n
2�
mX

[0]
m;nS

[0];fk;lg
m;n , where we have dropped

the subscript on X for notational convenience. Because the
DWT is shift variant, the performance of the detector is
also shift variant. To see this, we consider the performance

index d =
A
p
Ek(l)

�w
which is the normalized distance be-

tween the distributions of �(X) under the two hypotheses in
(2). For each parameter value k, Ek(l) = 1

A
E [�(X)jH1] =P

m;n
2�
m

�
S
[0];fk;lg
m;n

�2
where E[�(X)jH1] is the expected

value of �(X) given hypothesis H1. Figure 1 shows an ex-
ample of the variation of Ek(l) with input shift l when �(t)
is a Coi
et parameter 2 (henceforth denoted as C2) scaling
function [8] and 
 = 1.
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Figure 1: Variation of Ek with input shift for a C2 scaling
function (k = 7) analyzed with a C2 wavelet over the range
m = 1 to 10 with 
 = 1.

We de�ne a shift invariant detector by �rst noting that
the noise statistics are independent of DWT shift, since all
shifted transforms also act as approximate whitening �l-
ters. As a result, for a given known signal sk;l(t), we are
free to choose the DWT shift that maximizes Ek(l) and
thus the performance of the detector. For the signal sk;0(t)
with delay l = 0, we de�ne a detector with a test statis-

tic of the form �(X) =
P

m;n
2�
mX [Jk]

m;nS
[Jk];fk;0g
m;n where

Jk = arg maxJ
P

m;n
2�
m

�
S
[J];fk;0g
m;n

�2
is the optimum

DWT shift and is a function of k. It can be shown [9] thatP
m;n

2�
m
�
S
[Jk ];fk;0g
m;n

�2
= maxl Ek(l). We introduce the

notation Ek = maxl Ek(l) for use in the remainder of the
paper.

For the case of arbitrary delay l we de�ne a test statis-

tic �(X; l) =
P

m;n
2�
mX [Jk(l)]

m;n S
[Jk(l)];fk;lg
m;n where Jk(l) =

argmaxJ
P

m;n
2�
m

�
S
[J];fk;lg
m;n

�2
. With the identity

S
[J+l];fk;lg
m;n = S

[J];fk;0g
m;n , we �nd thatX

m;n

2�
m
�
S[Jk ];fk;0g

�2
=
X
m;n

2�
m
�
S[Jk+l];fk;lg

�2
;

so that Jk(l) = Jk + l. We may therefore rewrite the test

statistic as �(X; l) =
P

m;n
2�
mX

[Jk+l]
m;n S

[Jk ];fk;0g
m;n . The

corresponding likelihood ratio is p(X[Jk+l] jH1)

p(X[Jk+l] jH0)
.

We use the concepts developed above to de�ne a gener-
alized likelihood ratio for the case of unknown parameters:

r(~X) = max
fA;k;lg

p
�
X

[Jk+l]jA;k; l;H1

�
p (X[Jk+l]jH0)

:

where ~X = f ~Xm;n; m; n 2 Zg is the vector of UDWT
observations. Note that the DWT shift Jk + l is chosen
to maximize the detector performance conditioned on the
unknown parameters k and l. The ratio simpli�es to yield
a su�cient test statistic

�(~X) = max
fA;k;lg

"
A
X
m;n

2�
mX [Jk+l]
m;n S[Jk];fk;0g

m;n

�A
2

2

X
m;n

2�
m
�
S[Jk ];fk;0g
m;n

�2#
:



From the de�nition of Jk the second term is equal to A2

2 Ek .
We show in [9] that the de�nition sk;l(t) = 2
k=2�k(t) results
in Ek = E0 for all k, where E0 is a constant. Thus we may
write

�(~X) = max
fA;k;lg

"
A
X
m;n

2�
mX [Jk+l]
m;n S[Jk];fk;0g

m;n � A2

2
E0
#
:

The maximization over k and l can be performed indepen-
dently of the maximization over A, and we may de�ne a
test statistic

�(~X) = max
fk;lg

�(~X; k; l)

= max
fk;lg

X
m;n

2�
mX [Jk+l]
m;n S[Jk];fk;0g

m;n (4)

= max
fk;lg

X
m;n

2�
m ~Xm;2mn+Jk+l
~Sfk;0gm;2mn+Jk

: (5)

4. IMPLEMENTATION

Equations (4) and (5) represent two equivalent ways of com-
puting the detection statistic. We implement (5) which can
be viewed as a pattern matching operation in the UDWT

domain, where at each scale the pattern is ~S
fk;0g
m;2mn+Jk

. This

procedure requires O
�
2N
P

k2K
Pk
�
operations, where N

is the length of the signal, Pk is the number of non-zero co-

e�cients in ~Sfk;0gm;2mn+Jk
and K is the set of unknown scales.

The contribution of most of the coe�cients to the detec-
tion process is, however, negligible. We reduce the number
of required coe�cients by ranking them according to their
contribution to Ek and selecting only the largest Tk coe�-
cients. In the case of the C2 scaling function and 
 = 1, we
�nd that the largest Tk = 20 coe�cients account for 99:4
percent of the value of Ek .

We can further reduce the number of computations by
observing that the most signi�cant coe�cients of the pat-

tern ~Sfk;0gm;2mn+Jk
tend to be located near peaks in the UDWT

domain. Figure 2 shows an example for the C2 scaling func-
tion and the Gaussian function. This is not a surprising
result since the shift Jk was chosen to maximize Ek. In
particular, we note that a number of the coe�cients lie
somewhere on the maximum peaks at each analysis scale
m. We expect, therefore, that the locations in the UDWT
domain where the local maxima propagate across scales are
likely to be the locations at which the detection statistic is
maximized. Adapting the nomenclature of [10], we refer to
these locations as transform ridges and constrain the com-
putation of �(X; k; l) to a subset of values that correspond
to the ridges. Typically, the size of this subset is one to
two orders of magnitude less than the size N of the original
signal. The preceding discussion leads us to propose the
following detection methods:
Method A. Baseline GLRT method. Compute �(X; k; l)
for all values of k and l and �nd the maximum.
Method B. Preselection of Scales and Delays using Trans-
form Ridges. In this method we use a ridge �nding algo-
rithm to generate estimates of both the scale and location
of the transient. The qth estimate is referred to as an
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Figure 2: The UDWT of a C2 scaling function (solid line)
and the UDWT of a Gaussian function (dashed-dotted line)
are shown for scales m = 5 to 10. The signals are shown
in the top sub�gure (k = 7 for both cases). The largest 20
coe�cients (as ranked by contribution to Ek, with 
 = 1) of

the pattern ~Sfk;0gm;2mn+Jk
are marked with `o' and `�' symbols

for the scaling function and Gaussian function, respectively.

ordered pair fk̂q; l̂qg. We compute the detection statistic

�(X) = maxq �(X; k̂q ; l̂q).
Method C. Preselection of Delays using Transform Ridges.

In this method we use a ridge �nding algorithm to estimate
the delays but not the scales. The detection statistic is
�(X) = maxk;q �(X; k; l̂q).

The ridge �nding algorithm is described in detail in [9],
where it is also shown that the computational complexity
of methods B and C are typically an order of magnitude
less than that of method A. There are many variations of
the proposed methods, some of which we describe in [9].

5. SIMULATION RESULTS

We used Monte Carlo simulations to obtain the receiver
operating characteristics (ROC) of the detectors described
above. Each simulation consisted of 200 independent trials.
We generated 1=f
 noise sample paths using the method
described in [11] and 
 = 1. We employed three di�er-
ent transient signal models: a C2 scaling function, a Gaus-

sian function g(t) = �e�at
2
, and a two-sided exponen-

tial function e(t) = �e�bjtj. The temporal width and pa-
rameter Ek were made identical for all signal models. We
also de�ned the functions gs(t) = (

p
2)(
�1)g(

p
2t) and

es(t) = (
p
2)(
�1)e(

p
2t) for use in examining the e�ects

of scale mismatch. For each signal type, we used Pk = 20.
The set of unknown input scales was K = f6; 7; 8g, and the
length of each signal was N = 16384. We computed the
UDWT using a C2 wavelet for analysis scales m = 1 to 10

and used the performance index d =
A
p
Ek

�w
as a measure

of the signal to noise ratio of each simulation. Note that
for a GLRT detector, d no longer represents the normalized
distance between the distributions under the two detection
hypotheses.

In Figure 3 we show ROC curves for a C2 transient at
input scales 6 through 8. The performance of method C
is equivalent to that of method A, while that of method B
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Figure 3: ROC curves for detector methods A (solid line),
B (dashed-dotted line), and C (dashed line). Input signal
is C2 scaling function at scales ranging from 6 to 8. The
upper and lower set of curves correspond to d = 5 and
d = 4, respectively.

is worse for some cases, indicating errors in the estimation
of the unknown scale. In Figure 4 panel (a) we present
the ROC curves for a C2 transient detected with method A
using a C2 UDWT signal pattern and for a e(t) transient
detected with methods A and C, also with a C2 pattern.
The plot shows that the detector is relatively insensitive to
small errors in the assumed signal model. In Figure 4 panel
(b) we show the ROC curves for a e(t) transient detected
with method A using a e(t) UDWT signal pattern and for
a es(t) transient detected with methods A and C, also with
a e(t) pattern. A es(t) transient with scale k = 7 has an
e�ective scale of 6:5, and therefore panel (b) shows that
the detector is fairly robust with respect to mismatch be-
tween the actual input scale and the assumed input scales.
Finally, in Figure 4 panels (c) and (d) we examine the abil-
ity of the detector to discriminate against transients with
scales outside the assumed scale range K = f6; 7; 8g. We
consider Gaussian transients with scales 4; 5; 5:5; and 6 and
C2 transients with scales 4; 5; and 6. For both cases we �nd
that by scale k = 4 the performance is that of a detector
which assumes no a priori information about the signal.

6. CONCLUSION

We have proposed a GLRT detector for transients in 1=f


noise by making use of the approximate whitening proper-
ties of the DWT. The detector is shift invariant and is im-
plemented with a pattern matching operation in the UDWT
domain. The complexity of the matching procedure can be
reduced by at least an order of magnitude by using the
UDWT local maxima to identify scales and delays that are
most likely to maximize the detection statistic. The reduc-
tion can be achieved with little or no performance loss. The
proposed detector is robust with respect to signal model
and scale mismatch and discriminates against signals with
scales outside the desired detection range.
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Figure 4: ROC curves: signal model mismatch in panel
(a), scale mismatch in panel (b), and scale discrimination
in panels (c) and (d). For panels (a) and (b) the input scale
of the transients is k = 7 and the upper and lower set of
curves correspond to d = 5 and d = 4, respectively. For
panels (c) and (d), d = 5.
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