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ABSTRACT
A new method to realize arbitrary time-frequency plane
tilings together with critical sampling in block-recursive
filterbanks is presented. The method leads to pole-zero
approximation of the target channel transfer functions. Perfect
reconstruction within the limits of the approximation error
can be achieved.

1. INTRODUCTION

Variable filter design was one of the earliest applications of
the frequency warping technique [2][14]. The frequency
responses of filters, e.g., the cut-off frequency of a lowpass
filter was varied by replacing the unit delays of FIRs with
allpass sections. Oppenheim et all. [13] introduced frequency
warping based nonuniform resolution FFT.  Later Strube [15]
applied the technique to linear prediction (WLP), which
works approximately on the auditory Bark scale. WLP is now
more widely used in speech and audio coding [7][4], and i t
has consistently increased its popularity in the field of
perceptual audio signal processing [6].

Laine et al. [8][9] introduced auditory filterbanks which are
based on frequency warping and realized by the FAMlet
transform. Later a block recursive algorithm was published
were only two matrix operations are needed for each down-
sampled filterbank output [10]. The block recursive filterbank
is a novel structure where the efficient block recursion i s
based on the short-term cross-correlation between the channel
responses. It has been applied to auditory speech analysis, as
a front end of a speech recognizer, and automatic speech
segmentation [11]. In order to reach full synchrony between
the channels, every channel in the bank was sampled at the
same rate. This means that the high frequency channels are
undersampled and the low frequency ones are
correspondingly oversampled. To avoid the loss of
information at the highest frequencies the whole bank had to
be slightly oversampled. However, a better method has to be
found before  the filterbank can be applied to maximally
decimated subband coding. The new design introduced below
solves the problem.

In conventional multirate filterbanks and wavelet transforms
the critical sampling and perfect reconstruction is achieved in
two special cases only: uniform resolution and octave
filterbanks [1]. A novel warped wavelet method has tried to
solve the problem of arbitrary time-frequency plane tiling in
critical sampling context [3]. Unfortunately, the method i s
computationally so expensive that it hardly can be used in
real-time applications.

The present work provides a new method to solve the problem
of arbitrary time-frequency plane tiling in critically sampled
filterbanks.  The method is based on the use of channel
grouping and the use of enhanced block-recursive algorithm
with optimized coefficients. Now each group can be sampled
down by the same ratio. In principle, any type of frequency
warping (time-frequency tiling) can be realized.

The new method is tested using an experimental filterbank
consisting of 14 channels distributed in a frequency band of
0.05 - 11 kHz according to the auditory ERB-rate scale [12].
The channels are organized in four groups. The sampling in
the groups occurs at every 6th, 12th, 24th, and 48th sample
(the high frequency group mentioned first). The bank i s
critically sampled so that every block of 48 input samples
creates a block of 48 filter output samples allocated in time
and frequency according to the down-sampling rates.

This paper is organized as follows. Section 2 describes the
method of block-recursive filterbanks. In Section 3 the method
is applied to a simple filterbank. Finally, we give an example
how the designed filterbank works in speech analysis.

2.  FREQUENCY WARPED BLOCK-
RECURSIVE FILTERBANKS

The earlier frequency warped block-recursive filterbank
design was based on the use of frequency warped complex
exponentials called FAM functions and their time domain
representatives, FAMlets [10].

The general goal of the design is to create a maximally
decimated filterbank which produces a nonuniform resolution
spectrum of the input signal s(n) on a new frequency scale (ν-
scale). Typically the ν-scale is an auditory frequency scale.

The ν-scale spectrum S(b) is produced by applying the Fourier
transform to the frequency warped signal s(a). The signal s(a)
is produced from the spectrum S(m) of the input signal s(n) by
FAM transform or by applying the FAMlet transform directly
to the signal (1).

S(b) = F sν(a) = FΦν S(m) = F Ψν s(n)

a,b,m,n ∈Z

F ≡ Fourier transform matrix

Φν ≡ FAM transform matrix

Ψν ≡ FAMlet transform matrix

(1)

When the Fourier transform is combined with the FAM
transform a set of warped, discrete (periodic in frequency) sinc
functions is created. These functions form the basic building



block for frequency warped filterbanks. The new design in
Section 3 also applies these functions.

The earlier block-recursive design was based on the block-
wise approximation of the FAMlet transform. However, the
method can be generalized and applied directly to almost any
type of a set of finite energy impulse responses. The earlier
design resulted in the following algorithm [10]:

  St (b) = T St−1(b)+ U st , t ∈{1,2,3,...}, S0 = Æ, (2)

where t is the time index of the input signal block st , U is a
(spectral) state control matrix and T a (spectral) state
transition matrix. From the design point of view U realizes an
FIR part containing the first samples of the channel impulse
responses and T produces an IIR type approximation of the
rest of the channel impulse responses. Thus the block
recursive model forms a rational transfer function
approximation of the actual target filterbank. The optimal
design of the recursive part is based on the short-term cross-
correlation between the channel impulse responses.

In the following (2) is enhanced by extending the FIR part to
two separate blocks. The new block-recursive filterbank i s
based on the use of the following equations:

  

St (b) = Ast + zt t ∈{1,2,3,...}

zt = P zt−1 + Bst−1, z0 = Æ, s0 = Æ
(3)

where the matrix A contains the first samples of the channel
impulse responses, B contains the next samples of the impulse
responses, and P is so called block predictor matrix which
recursively produces the rest of the impulse responses (IIR
part).

The design example of the next Section demonstrates that by
grouping the channels in a proper way and then applying the
block-recursive algorithm to each of the groups, maximal
decimation and perfect reconstruction can be realized in this
nonuniform resolution (ERB-rate) filterbank. The channel
responses are considerably improved by carefully optimizing
the matrices B and P in each channel group.

3.  EXAMPLE OF THE NEW DESIGN

3.1 The Target Filterbank

The target filterbank is made of frequency warped discrete time
sinc functions defined by (4).

H(b,ω) = 1− e− j Bπ ν(11.025ω /π)/ ν0

e− j b2 π / B − e− j π ν(11.025ω /π)/ ν0 ,

where ν( f ) = sign( f ) log(1 + 4.37 f ).

      (4)

The function ν(f) defines the ERB-rate scale [12] based
frequency warping (f in kHz). The term ν0 = ν(11.025) is used
for ν-scale normalization, the parameter B defines the total
number of channels (bands), and ω is the normalized frequency
-π < ω ≤ π.

The variable b defines the actual channel -B ≤ b ≤ B. The target
filterbank was designed with K = 16, however, the lowest
(ÒDCÓ like channel) and the highest one have little use in
speech analysis and were left out. The target filterbank can be
easily orthonormalized by using a proper weighting function.
The channel frequency responses without weighting

(nonorthogonal case) and without windowing (without
sidelobe attenuation) is depicted in Figure 1.
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Figure 1. Frequency responses of the ERB-rate target
filterbank (y: amplitude, x: normalized frequency ω).

3.2 Properties of the Target Filterbank

One interesting question is how the frequency warping affects
the basic time-frequency properties of the target filterbank.
When the frequency responses of (4) are inverse Fourier
transformed a set of analytic (complex valued) impulse
responses is created.  This type of bank provides a high time
resolution because the channel magnitude information i s
available at every sample.

The bandwidths of the channels were chosen to be clearly
broader than in the human auditory system. The aim was to
further improve the time resolution to study rapid spectral
variations in speech (e.g., pitch-synchronous effects).

Figure 2. Hilbert envelopes of the analytic impulse responses
of the target filterbank (z: channel number, y: amplitude, x:
time).

The Hilbert envelopes of the channel impulse responses of
Figure 2 give some idea of the varying time resolution of the
filterbank. The envelopes follow approximately the shape of
the gamma function (rapid growth in the amplitude followed
by slowly decreasing tail). The high-frequency channels have
naturally narrowest time envelopes and the time resolution
decreases gradually towards the low-frequency end. The
amplitude maximum has increasing latency towards the low
frequencies. This approximates the traveling wave
phenomenon in the cochlea.

The instantaneous frequencies of the responses show a chirp-
like  behavior [11]. This type of gammachirp responses were



proven to be superior to the conventional gamma-tone filter
[5].

When the -3 dB points of the time envelopes and the
frequency magnitude curves are numerically estimated, the
classical Gabor time-frequency resolution measure of the
filters can be calculated. Figure 3 collects the data. Each
channel is depicted by a dot on this time-frequency resolution
plane. The solid curve represents the case df ¥dt = 0.5 which i s
the optimum in Gabor sense.
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Figure 3. Time-frequency selectivity of the target filterbank
(dots). Theoretical Gabor limit (line) (y: bandwidth in kHz, x:
duration in ms).

The results show that the frequency warping does not affect
the time-frequency optimality of the filterbank. On the
average the products of the time and frequency resolutions of
the channels are 0.5. This is true at least when ERB-rate
warping is used.

3.3 The new Block-Recursive Filterbank

The sampling frequency for the target filterbank was chosen to
be 22.05 kHz. The fourteen channels where grouped into four
groups with 4, 4, 3 and 3 channels listed from the low
frequency channels up. Correspondingly, the down sampling
ratios were chosen to be: 48, 24, 12, and 6. These numbers
equal to the block sizes used in the groups. Thus 48 input
samples produces 4+2¥4+4¥3+8¥3=48 channel output samples.
In other words, the block-recursive filterbank is maximally
decimated. Note that even though the filterbank is not exactly
an octave bank the block-recursive structure allows (in this
case) down sampling in the steps of octaves.

The matrix A of the algorithm (3) was chosen directly from the
channel impulse responses of the target system. An attempt to
optimize this further was made without any noticeable
improvements in the approximation of the frequency response.

The block predictor P can be solved based on a set of normal
equations. A closer derivation of the equations is given in
[11]. The final formula for P is given in (5).

P = GGT( )−1
GGd

T





T
, (5)

where the rows of the matrix G contain the windowed impulse
responses of the corresponding targets and the rows of the
matrix G d contain the windowed impulse responses of the

corresponding targets taken from the d-th sample forward. The
parameter d defines the block size used in the prediction.
Formally P is a ratio of two cross-correlation matrices (one
matrix multiplied by the inverse of another).

The quality of the result can be controlled by varying
(optimizing) the windows used for the impulse responses
before the computation of the cross-correlations. Best results
were obtained using windows having the shape of rised
cosine (0 ≤ x ≤ π) to power α, where the coefficient α must be
optimized for each channel.

In all optimizations the quality of channel frequency
responses was monitored by computing the log-magnitude
differences at frequency points where the side-lobe maxima of
the target are located (uniform distribution in the ERB-rate
scale). If the magnitude of the target was larger than that of the
model that point was not taken with in the average error (i.e.,
the model was allowed to be better than the target).

Finally, the matrix B was optimized based on the over-all
quality of the frequency responses of the channels. The initial
values of the elements are picked up from the target impulse
responses just after the samples taken in the matrix A. The
further optimization was based on a method where a random
number matrix was generated and added to B. If the average
error between the model and the target at every channel in the
group was decreased the random number matrix was stored.
When fifteen such matrices were found they were averaged and
added to B by using an optimized scaling.
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Figure 4. Channel 4 (upper frame) and 8 (lower frame) target
magnitudes (thick lines) and their block recursive
approximations (thin lines). (y: dB, x: kHz).



The idea behind this procedure is that by allowing some error
in the second FIR part of the responses the recursive (IIR)
continuation may fit better to the nonrecursive (FIR) part thus
minimizing the average error in the frequency response.

The impulse responses of the block-recursive filterbank can
easily be produced by allowing matrix form data to be stored
to the vector-valued delay elements (3) and by feeding in an
identity matrix followed by a chain of zero matrices. Finally,
the impulse response matrix is created by joining the
generated output matrices.

Figure 4 depicts two typical magnitude responses of the
created filterbank compared to the corresponding target
responses. In low frequency channels (upper frame) the block-
recursive algorithm is not able to generate the rather long tail
of the impulse response accurately. The introduced
approximation error is seen in the high frequency range.

The situation at middle and high frequency channels is better
due to the shorter impulse responses. The FIR matrices include
large part of the impulse response and the recursive part i s
short. The optimization of the matrix B is of great importance
in improving the magnitude responses of these channels.

3.4 Simulations and Results

When the impulse responses of the target system are
windowed so that the introduced magnitude error
corresponds to that of the block-recursive (BR)
approximation, the average length of the impulse responses i s
90 taps. The average computational load of the block-
recursive realization is about 49 taps per channel which i s
only 54% of the FIR realization. The difference will be even
larger when narrower filters with longer impulse responses are
used.

Figure 5 demonstrates the use of the BR filterbank in speech
analysis. Five periods of Finnish /¾/ are analyzed. Strong
energy peaks are seen at the glottal closures and secondary
excitations with quite strong high frequency energy are seen
at the glottal openings. At the low frequency area the open
periods with flow pulses produce ÒbubblesÓ. The high
frequency selectivity due to the higher sampling rate is clearly
improved when compared to the earlier design [10].
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Figure 5. Finnish /¾/ analyzed by the block recursive ERB-
rate filterbank (y: channel number, x: time in blocks of 6
samples).

The simulations showed that the perfect reconstruction i s
mainly limited by the approximation error of the BR filterbank.
The measured noise level was about 60 dB below the signal.

Thus the filterbank may find applications in speech and audio
coding, too.
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