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ABSTRACT
Most current speech recognition systems are built upon a single
type of model, e.g. an HMM or certain type of segment based
model, and furthermore typically employs only one type of
acoustic feature e.g. MFCCs and their variants. This entails that
the system may not be robust should the modeling assumptions
be violated. Recent research efforts have investigated the use of
multi-scale/multi-band acoustic features for robust speech
recognition. This paper described a multi-model approach as an
alternative and complement to the multi-feature approaches. The
multi-model approach seeks a combination of different types of
acoustic model, thereby integrating the capabilities of each
individual model for capturing discriminative information. An
example system built upon the combination of the standard
HMM technique with a segment-based modeling technique was
implemented. Experiments for both isolated-word and
continuous speech recognition have shown improved
performances over each of the individual models considered in
isolation.

1. INTRODUCTION

An acoustic model provides a mapping of acoustic-phonetic
information. As such, the accuracy of the model has a
fundamental effect on the performance and robustness of
automatic speech recognition. Because different models make
different simplifying assumptions, each specific model may only
be capable of characterizing a certain aspect of the available
information. Most current speech recognition systems are built
upon a single type of model, e.g. an HMM or certain type of
segment based model, and furthermore typically employ only one
type of acoustic feature e.g. MFCCs and their variants. This
entails that the system may not be robust should the modeling
assumptions be violated. This is significant, as the production of
more robust recognition systems is essential.

Ideally an acoustic model should be capable of capturing all of
the discriminative information found in a given acoustic signal.
Multi-feature and multi-model approaches offer a practical
solution. The current research into the multi-feature techniques
has investigated the calculation of multi-scale acoustic features in
either the time or the frequency domain, and the combination of
these feature streams within an HMM framework [1, 2, 8, 10].
Each feature stream represents a different characteristic of the
input information. The combination of different feature streams
has been accomplished by either directly creating an augmented
feature vector that consists of all the component streams, or
alternatively merging the likelihoods associated with each feature

stream. Such systems have shown improved performance and
robustness over the corresponding single feature stream based
systems [1, 8, 10].

In this paper we investigate a multi-model approach as an
alternative and complement to the multi-feature approach. The
multi-model approach differs from the multi-feature approach in
that it seeks a combination of different types of acoustic model,
thereby integrating the capabilities of each individual model for
capturing discriminative information. The proposed research is
based on the observation that while the conventional HMM with
multiple mixture densities is effective in representing the
diversity of the static spectral characteristics, it is ineffective in
capturing dynamic spectral information; likewise, while segment
based models improve upon the standard HMM in terms of
captured dynamic information, the inclusion of a segmental-level
multiple mixture representation may prove detrimental due to the
considerable increase in model complexity [9]. In other words, it
may be assumed that there is no unique modeling method that
encompasses the other methods in terms of the amount of
information being captured. Should this assumption be true, then
it is possible that an effective combination of different modeling
techniques, with each technique emphasizing a different aspect of
the input information, will result in a model that captures more
information than any of the individual techniques considered in
isolation. This research is significant in that it may bring about a
significant improvement in the robustness of current speech
recognition systems with relatively little effort.

2. A MULTI-MODEL APPROACH

For the creation of a multi-model system we need to address at
least two issues: 1) which modeling techniques can be effectively
combined, and 2) which methods can be used to effectively
accomplish this combination. We focused our research on the
possible combinations of HMM based techniques. Based on the
above discussion, we suggest a combination of the standard
HMM employing a multiple mixture of static densities with
segment-based models, thereby integrating their capabilities for
capturing both the static and dynamic spectral characteristics of
speech. This combination is based on the assumption that there is
little correlation between the error patterns that arise from each
component model.

Given the component models, we investigated the use of an
HMM framework to form the combined model. Specifically, we
define the state-dependent observation densities of the combined
model as the product of the corresponding densities from each of
the component models, i.e.
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where )(xbm
i  and )(xbi  represent the observation densities of

the m’th component model and the combined model respectively,
for state i. If normalization of (1) is required then an exponential
weighting can be introduced to each component density to
balance their combination. Given (1), the likelihood function of
the combined HMM can be written as
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where o is a time sequence of observations and λ  is the
parameter set of the combined model.

The model defined by (2) is equivalent to a linear combination of
the component observation likelihood functions in the
logarithmic domain, a method used by some multi-feature models
for combining likelihoods from different feature streams (e.g. [1,
2, 8]). Of interest is the difference between (2) and those multi-
feature methods. In (2) each )(xbm

i  represents a different type of
observation density and all the )(xbm

i ’s are applied to the same
feature stream o; whilst in the multi-feature methods the same
type of density is used for all the )(xbm

i ’s, with each )(xbm
i

accounting for a different type of feature input.

The system structure shown in (2) has the advantage that it
permits computationally effective training and decoding, and
therefore retains one of the most attractive characteristics of the
standard HMM technique. Following the standard procedure, a
maximum-likelihood estimate of the model parameter set λ  can
be obtained by an iterative maximization of the following
auxiliary function
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where 0λ  is an estimate from the previous iteration and
),( λsop  is given by
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Substituting (4) into (3) we obtain, particularly, an integral term
of ),( 0 λλQ  relating to the )(xbm

i ’s
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In (5), the probability ),( 0λisop t =  for each t and i can be
calculated using the standard forward-backward recursions.
Hence, the re-estimation formula for the appropriate parameter
vector of each )(xbm

i , m
iθ , is readily obtained by solving the

corresponding equation
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These formulae permit the model parameters to be estimated in a
computationally effective manner.

3. AN EXAMPLE SYSTEM

In this section we describe an implementation of the multi-model
system (2) by using specific examples for the )(xbm

i ’s. We
chose to combine the standard HMM employing a multiple
mixture of Gaussian densities with a segment-based model,
namely the inter-frame dependent HMM (IFDHMM) [4, 5, 7].
For the standard HMM, the K-mixture state-i observation density
is given by
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where )(xgik  
is the k’th mixture component Gaussian and ikw

the corresponding mixture weight. The standard HMM with
multiple mixture densities (7) is effective for representing the
diversity of the static spectral characteristics of speech. However,
it fails to adequately capture the dynamic spectral characteristics
of speech, due to the frame independence assumption. During the
past decade, various modified models have been proposed to
overcome this problem [9]. Generally, a certain type of segment-
level probability density is used to replace the initial frame-level
density, thereby capturing longer-term dynamic spectral
information. The IFDHMM embodies a modeling technique that
we developed earlier as an alternative to the existing techniques
for representing segmental level characteristics. The IFDHMM
represents such characteristics by assuming that each acoustic
frame is dependent upon a segment of preceding or succeeding
frames. Specifically, the state-i observation density of the model
is defined as [7]
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where N defines the length of the conditional segment,
)( nin xxg  is a conditional Gaussian density capturing the

correlation between x and the n’th conditional frame nx , and inc
is the corresponding weight, satisfying the constraints 0≥inc
and 1=Σ inn c . The conditional Gaussian density function

)( nin xxg  can be shown to have a parametric form [7]

 ))()(21exp()( inninininninnin xHxUxHxxxg µµ −−′−−−∝

 (9)

where inµ  is a L-dimensional vector and inH  and inU  are both
LL ×  matrices, L being the dimensionality of the frame vector.

Given an observation sequence o, the N conditional frames
associated with each frame to , i.e. )1(τ−to ,…, )(Nto τ− , are
defined by a pre-chosen time-lag sequence )1(τ ,…, )(Nτ .
Positive )(nτ ’s corresponds to a preceding-frame dependent
system and negative )(nτ ’s corresponds to a succeeding-frame
dependent system. Both models, along with the standard HMM
(7), are combined according to (2) to form the combined model,
i.e.

)...()...()(   

)(

)()1()()1(

10

Nttt
ifd
sNttt

ifd
st

std
s

s t
sss

ooobooobob

aop

ttt

tt

ττττ

πλ

++−− ⋅⋅⋅

= ∑ ∏ −

(10)



The combination of both the preceding and succeeding frame
dependent models has been justified by our previous research in
terms of improved performance [4, 5]. Given the non-stationary
nature of speech, it is reasonable to assume that for a particular
frame, the succeeding (or preceding) frames contain useful
dynamic information that may not be encapsulated in the
preceding (or succeeding) frames.

4. EXPERIMENTS

Experiments for both isolated-word and continuous speech
recognition have been conducted. The isolated-word recognition
experiments are based on a speaker-independent alphabetic
database (provided by British Telecom Laboratories), from which
the highly confusable E-set (b, c, d, e, g, p, t and v) is extracted.
The database contains three repetitions of each word by a total of
104 speakers (52 male and 52 female). Among the 104 speakers,
52 were designated for training and the other 52 for testing. For
each word, then, about 155 utterances are available for training,
and a total of 1219 utterances are available for testing for all
eight words. In addition to isolated word recognition, phone
recognition experiments have been performed using the TIMIT
database (1990 release). Following the recommendations by
NIST [3], the database was subdivided into training and test sets,
with the core test set being used in recognition. For the
recognition of the E-set, a state-tied model topology using 15
states for each word, with the final 9 states tied among all the
eight words, was adopted. For the phone recognition
experiments, we built models for 48 phones and differentiated
the standard 39-phone set [6]. Each phone was modeled with 3
states, a left-to-right topology and no context dependency. In all
experiments, Mel-frequency cepstral coefficients (MFCCs) plus
their first order differential parameters are calculated as the
feature vector for each frame. Furthermore, all models used
diagonal-type covariance matrices.

4.1 E-Set Recognition Results

The results presented in this section test the performance of the
example system (10) for the recognition of the E-set. As
described in Section 3, three component modeling techniques are
combined in the system, namely a standard HMM and two
IFDHMMs, one IFDHMM with a dependency upon preceding
frames and the other with a dependency upon succeeding frames.
As a starting point, Table 1 shows the recognition results of the
individual component models. For the standard HMM, the results
are presented as a function of the number of mixtures, and for the
IFDHMMs the results are shown as a function of the number of
conditional frames. For the IFDHMM, the number of conditional
frames that is employed is directly proportional to the length of
the segment being accounted for by the model. The results in
Table 1 indicate that, due to an appropriate modeling of the
longer-term dynamic spectra of speech, the IFDHMMs
outperformed the standard HMM using multiple mixtures of
static densities.

Next, we examine the performance of a simplified version of (10)
by including only the two IFDHMM components in the model
combination. The results are shown in Table 2, as a function of
the number of conditional frames used in each component model.

Model
Parameter
(K or N)

Accuracy
(%)

K=1 86.3
K=3 88.8Standard HMM
K=5 89.6
N=2 90.8
N=3 91.7

IFDHMM with
preceding frame dependency

N=4 92.3
N=2 90.8
N=3 91.2

IFDHMM with
 succeeding frame dependency

N=4 91.6

Table 1. Recognition results of the individual models for
the E-set. K and N represent the number of mixtures and
the number of conditional frames used in each state in
the appropriate model, respectively.

Model combination
Parameter (N) in
each IFDHMM

Accuracy
(%)

N=2 92.5
N=3 93.0ifd− + +ifd
N=4 93.6

Table 2. Recognition results of a simplified combined
model for the E-set. This model combines two
IFDHMMs, one with a dependency upon preceding
frames (ifd−) and the other with a dependency upon
succeeding frames (ifd+). N is the number of conditional
frames used in each component IFDHMM.

Comparing Table 2 with Table 1, it can be seen that the
combined model always produces a higher accuracy than the
corresponding component models operated individually. This
phenomenon has already been reported previously [4, 5]. The
non-stationary characteristics of speech entail that each of the
two component IFDHMMs captures some useful dynamic
spectral information that is not contained in the other. The
combined model utilizes the information found in both
component models. This led to the improved performance.

Finally, we include the standard HMM component into the
model combination. The recognition results are shown in Table
3, where a fixed number of 4 conditional frames are used in each
IFDHMM component, and the number of mixtures used in the
standard HMM component is varied between 1 and 5.
Comparing Table 3 with Table 1 and Table 2, we can see that the
inclusion of a single-mixture, standard HMM component brought
about little improvement in the performance. This is due to the
poor accuracy of the single-mixture density in characterizing the
static spectral variations. However, as the number of mixtures
increased, the performance improvement due to the addition of
the standard HMM component became significant. Typically, for
the 4-conditional-frame and 5-mixture case, the error reduction
resulting from the inclusion of the standard HMM component
reached 24.7%, 25% and 17.2% for the (ifd−+std), (ifd++std) and
(ifd−+ifd++std) model combinations respectively. Our best result,
94.7%, is obtained by the full implementation of the example
system that combines all the three types of component model.
Inevitably, compared to each individual model, the combined



model has an increased parameter size, but less so than a
corresponding segmental-level multiple mixture model.

Model combination
Parameter (K) in
standard HMM

Accuracy
(%)

1 92.2
3 93.9-ifd  + std
5 94.2
1 92.3
3 93.7+ifd  + std
5 93.7
1 93.2
3 94.0-ifd  + +ifd  + std
5 94.7

Table 3. Recognition results of the combined model for
the E-set. The model combines the standard HMM (std)
with IFDHMMs using preceding (ifd−) and/or succeeding
(ifd+) frame dependencies. The number of conditional
frames used for the IFDHMMs (N) is fixed at 4 and the
number of mixtures used in the standard HMM (K) is
varied as shown.

4.2 Phone Recognition Results

The results presented in this section test the performance of the
example system (10) for the context-independent recognition of
phones within the TIMIT database. In the experiments, the
number of mixtures used for the standard HMM component was
fixed at 16 and the number of conditional frames used for each of
the IFDHMM components was fixed at 4. Additionally, a bigram
phone language model was estimated on the training set and
applied during recognition. Table 4 shows the phone recognition
accuracies produced by the appropriate systems.

Model
Phone Recognition

accuracy (%)

std 65.8

Ifd− + ifd+ + std 66.1

Table 4. Context-independent phone recognition results
based on the TIMIT database.

While the combined model achieved significant error reductions
in the recognition of the E-set, it obtained a less significant
improvement in TIMIT phone recognition, as can be seen from
Table 4. It is well known that phones have a short duration,
cannot be pronounced in isolation, and that their characteristics
greatly vary depending upon their context; thereby preventing an
effective capture of sufficient and accurate dynamic spectral
information. In order to obtain sufficient acoustic discrimination
a larger unit than the phoneme (e.g. a syllable) is desirable.

5.  SUMMARY

An acoustic model is a simplified mathematical representation of
acoustic-phonetic information. The simplifying assumptions
inherent to each model entail that it may only be capable of
capturing a certain aspect of the available information. An

effective combination of different types of model should
therefore permit a combined model that can utilize all the
information captured by the individual models. This paper
presents some preliminary research in combining certain types of
acoustic model for speech recognition. In particular, we designed
and implemented a single HMM framework, which combines a
segment-based modeling technique with the standard HMM
technique. The experiments for both isolated-word and
continuous speech recognition have shown that the combined
model has the potential of producing a significantly higher
performance than the individual models considered in isolation.
The implemented model, though specific, may have a more
general significance. That is, improved performance can be
obtained by combining different types of acoustic model.
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