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ABSTRACT

A QR based technique is presented for estimating the approximate
numerical rank and corresponding signal subspace of a matrix
together with the subspace projection of the least squares weights.
Theoretical difficulties associated with conventional QR
factorisation are overcome by applying the technique of Row-
Zeroing QR to the covariance matrix. Thresholding is simplified
compared with the use of the data matrix as the diagonal value
spectrum is sharpened and the subspace estimate is improved. An
approximation to the minimum norm solution for the projection of
the least squares weight onto the signal subspace of the data is
obtained simply, without performing an SVD.

1. INTRODUCTION

A common requirement in adaptive processing of sensor array data
is the estimation of the number of strong signals present and the
projection of both the data and the least squares adaptive weight
vector onto the signal subspace. Projection of the least-squares
weight vector onto a subspace of reduced dimension is an
established technique for reducing the number of adaptive degrees
of freedom used by an adaptive sensor array. Conventional
algorithms for subspace estimation based upon eigenvalue
decomposition (EVD) or singular value decomposition (SVD) are,
however, both expensive to compute and difficult to make
recursive. By contrast, algorithms based upon ordinary
factorisation have established pipelineable architectures[6] for
calculation of the least squares weight vector but are generally
unreliable for rank and subspace estimation[2]. Chan’s rank-
revealing  factorisation[1] (RRQR) transforms
factorisation to a form guaranteed to reveal the rank of a rank-
deficient matrix by the use of column permutation operations.
Despite the much reduced computational load, it is not simple to
design real-time hardware for the RRQR algorithm. It suffers from
the same problems as the EVD or SVD in that the need to permute
the columns of the matrix makes it a two-sided process and it also
requires an indeterminate number of iterative steps.

A computationally simpler technique for estimating the number of
strong signals and projecting the least-squares weight vector onto
the signal subspace has previously been presented in both block
and recursive forms[7][8]. Based upon  factorisation, the
technique is ideally suited to the adaptive null-steering problem
because the least-squares weight is readily obtained from the QR

factorisation by backsubstitution i.e. no matrix inversion is
required. This one-sided projection and rank estimation technique
(OSPRE) [7], however, lacks a formal guarantee to reveal the rank
of an arbitrary rank-deficient matrix. In fact, there is a well-known
counter-example[5] for which the algorithm fails. In this paper, it
is shown that this same technique applied to the QR factorisation
of the covariance matrix produces a much better estimate of the
signal subspace and also overcomes the problem case. The least
squares weight vector can still be obtained by backsubstitution and
an approximation for the minimum norm solution to the projected
weight is obtained for only a little further effort.

We begin by reviewing the Row-Zeroing QR factorisation
technique which forms the basis of OSPRE in section 2. In section
3 we discuss the numerical linear algebra technique known as
Orthogonal Iteration. The new algorithm is introduced in section
4. How the counter example due to Kahan [5] is overcome when
the new technique is used is discussed in section 5. The results of
a computer simulation are presented in section 6.

2. ROW-ZEROING

The technique of Row-Zeroing in the  factorisation[7] enables
rank and subspace estimation without the need for iteration or
permutation. Consequently it is faster and is more readily made
recursive than Chan’s RRQR algorithm although it produces a
more approximate estimate of the rank and the signal subspace[8].
The approach is essentially  factorisation computed using a
version of modified Gram-Schmidt orthogonalisation. It proceeds
in the usual way, constructing the  matrix , say, row by row,
but when a small diagonal element below some threshold , say,
is detected, that entire row of  is set to zero. When  diagonal
entries of the  column matrix  are left un-zeroed, the (r+1)th

singular value,  of the  data matrix  is then
bounded by:

(1)

Hence, for small enough  the rank of  is revealed to be at most
. The subspace angle[3]  between the signal subspace

estimated using Row-Zeroing QR factorisation upon  and that
obtained from the SVD is bounded by[7]:

(2)

in which  is obtained from  by deleting both rows and
columns which contain a zeroed diagonal element.
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Where it arises the occurrence of a small diagonal element on the
leading diagonal element of  is a reliable indicator of rank-
deficiency. Moreover, Row-Zeroing then overcomes the
corruption of the remainder of  which arises with conventional

 factorisation. This corruption would normally prevent the
degree of rank deficiency from being determined. There is
however, no guarantee of any small diagonal element in  when

 is rank-deficient. Consider, for example, the  upper
triangular matrix  due to Kahan[5]:

(3)

where, . Chan[1] for example, uses the value
and . For this choice the diagonal values of  decrease
smoothly from 1.0 to 0.368 and the singular values from  to

 decay similarly smoothly from 4.635 to 0.411. The value of
, however, is . The matrix is therefore rank-

deficient but has no small entry on its leading diagonal. For this
reason, the Row-Zeroing approach will clearly fail for Kahan’s
matrix.

In conventional QR-based least-squares minimisation we write the
 data matrix  as . The least squares weight

vector , i.e. the solution to is obtained from:

(4)

by backsubstitution. Now, it is not difficult to show that the
subspace projection of the least-squares weight vector  is
equivalent to the weight vector obtained from the least-squares
problem with the projected  matrix and . Thus, in OSPRE,
Row-Zeroing is applied to X in order to replace  in (4) with the
Row-Zeroed  matrix . This matrix is an approximation to the
“R” matrix in the  factorisation of the projection of  onto the
signal subspace. The resulting equation for  can then be written:

(5)

For simplicity, the first  rows of  are shown here as non-zero
(and  as the first  elements of ) but it in general this could
be any set of r rows. Notice that  is left undetermined. One
solution for  is clearly:

(6)

where  is obtainable simply by back-substitution. The general
solution, however, is:

(7)

where  is the solution for  from (6). There is therefore an
element of choice here for . One choice is to select the elements
of  in such a way as to minimise the norm of . This solution
can be written:

(8)

where . Now whilst  can be obtained simply
from the OSPRE algorithm, in general, it does not result in a beam
pattern with low sidelobes. To achieve this the minimum norm
solution (equation (8)) can be used which entails extra
computation. In what follows we show that this difficulty is
overcome by applying the Row-Zeroing technique to the
covariance matrix or powers thereof. Before introducing this
approach, however, we discuss the numerical linear algebra
procedure known as Orthogonal Iteration.

3. ORTHOGONAL ITERATION

Orthogonal Iteration[3] is a technique for estimating the
“dominant invariant subspace”  of a square complex
matrix  i.e. the subspace spanned by the leading  eigenvectors

 of  associated with the  largest eigenvalues . The
technique proceeds as follows: given a matrix A and some initial

 matrix  with orthogonal columns:

(9)

where the last step means select the first  columns of the matrix
Q. For  and at iteration  Orthogonal Iteration generates
square matrices  such that  given by:

(10)

converges to upper triangular form with increasing . Hence,
Orthogonal Iteration converges to a Schur decomposition of
(provided, theoretically, that  is not deficient in any of the
eigendirections). That is to say that:

(11)

where  is strictly upper triangular. Note, however, that the
eigenvalues  do not necessarily arise in decreasing magnitude
order.

A general matrix A is said to be “normal” if:

(12)

Furthermore, it is readily shown that an upper triangular matrix
which is normal has to be diagonal. Therefore, at convergence and
assuming that A is a normal matrix,  and

(13)

The columns of  will then be the (right) eigenvectors  (in the
appropriate order).

Finally note that it is easy to show from equation (9) that with
 (and ) we have:

(14)

where the last step defines  and follows because the product of
triangular matrices is also triangular. Hence, by virtue of its
uniqueness, the QR decomposition of the matrix  will produce
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the orthogonal matrix  that would appear at iteration k of the
Orthogonal Iteration procedure. Thus the QR decomposition of
increasing powers of a normal matrix results in a sequence of
orthogonal matrices that converge to the orthogonal matrix found
in the EVD of the original matrix.

From equations (13) and (14), it is easy to show that1

(15)

for sufficiently large k. As the rows of the matrix  are of unit
norm, it can be seen that the norm of the rows of  converge to
the kth power of the eigenvalues . Given these properties of a
normal matrix and the QR decomposition of its powers, we are
now in a position to formulate the new algorithm.

4. COVARIANCE POWER PROJECTION

Let the covariance matrix of the data be  and for some
power p write . Then the normal equations give:

(16)

and we can again obtain  by backsubstitution in the usual way.
The data matrix  is not generally normal but the covariance
matrix , and any power of M is normal since M is
Hermitian. Thus, using the results of the previous section, the QR
decomposition of a suitably large power of the covariance matrix
will produce an orthogonal matrix that is approximately the matrix
of eigenvectors of M (i.e. right singular vectors of X).
Furthermore, the norm of each row of the triangular factor will be
the kth power of the eigenvalues. Thus if we proceed with the Row-
Zeroing technique of OSPRE, but with thresholding based upon
the row norm instead of the diagonal element, we can determine
the signal subspace and project the least-squares weight vector
onto it. The important point here is that the process is now
guaranteed to be rank-revealing in the limit  since the
eigenvalues of the covariance matrix are the squares of the singular
values of the data matrix and only the latter are reliable indicators
of rank. This provides encouragement that in practice  will
tend to be rank-revealing and give good subspace estimates for
some finite, and possibly small, .

Now, it has been observed experimentally that the diagonal
element of the triangular factor in the QR decomposition is often
one of the largest elements in the row. Thus we can expect that the
diagonal elements of the triangular factor will be indicative of the
norm of that row i.e. . Thus it may be possible to perform the
thresholding based only on the value of the diagonal elements.
Indeed, if we use the Row-Zeroing technique upon  to give

, say, it is easy to see that the analytic error bound upon the
subspace angle corresponding to (2) is now given by:

(17)

This is a tighter bound than that upon  since,  is
 and, in practice, one finds .

Hence the subspace estimate is correspondingly more accurate.

1. This may look odd at first sight but remember that it is only true
for . In general the right hand matrix is dense but with
small elements below the diagonal if k is sufficiently large.

In addition, the diagonal value spectrum of the R matrix is also
sharpened - making thresholding easier. To see how this arises
consider the simple case:

(18)

where,  and  are unit vectors and ,  and  are scalars.
For this case:

(19)

whereas for the covariance matrix:

(20)

Hence, for  the ratio of the first to the second diagonal
element in (20) is the square of that for (19) i.e. the gap between
the diagonal elements is widened. A similar argument holds for
successive powers of the covariance matrix.2

The effectiveness of this approach is illustrated in figure 1. The
spectrum of diagonal values for the different techniques is
compared with the singular value spectrum for a particular case of
5 signals of 20dB power with respect to noise. For a fair
comparison the values in the diagonal value spectra obtained for

 and for  are raised to the powers  and
respectively. All the spectra were then normalised by their largest
values. The ordinary QR diagonal value spectrum of the data
shows no discernable gap at all. Using the covariance sharpens the
diagonal spectrum as predicted. A further (albeit smaller)
improvement in the diagonal value spectrum is then obtained using

 in place of .

Finally note that, as in section 2, the projected least-squares weight
vector produced by the above method (OSPRE with  as input)

2. These results are not due simply to a “squaring” of the data
matrix. Whilst the net information content of the matrix is the
same, columns of the covariance contain information from all
sensors and not just from one sensor alone as in the data.
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is not the minimum norm solution. However, the Q matrix from the
decomposition contains estimates of the right singular vectors of
the data matrix X. Thus, a projection operator can be constructed
that is an approximation to that which would result from having
calculated the SVD of X. This is used to approximate the
minimum norm solution by projecting the weight produced from
OSPRE. This process constitutes the proposed “Covariance Power
Projection Algorithm”. The algorithm is clearly not suited to
implementation in a pipelined form. However, it is possible to
form the covariance matrix from the triangular factor R of the data
matrix since . Thus, a practical
implementation can consist of a recursive updating of R (standard
QRD-RLS[6]) and then, whenever subspace projection is required,
the R matrix can be used, off-line, to form the covariance matrix
(which involves fewer operations than forming ) or a power
thereof, to use as the input to OSPRE.

5. RESOLVING THE PROBLEM CASE

Whereas a small diagonal element on the leading diagonal of the
“R” matrix in a  factorisation does indicate rank-deficiency
when it arises, there isno guarantee of this arising when a matrix
is rank-deficient. This can now be seen as a consequence of the
difference in general between the eigenvalues and singular values
of a matrix. The reason that Kahan’s matrix is difficult to handle is
because its eigenvalues are different from its singular values and in
particular because the former reveal no gap. Secondly, an
additional difficulty with  for algorithms based on QR
decomposition is the upper triangular structure itself -  is its
own triangular factor. Upset this structure by a simple column
interchange and the rank-deficiency soon becomes apparent by
one or two steps of Orthogonal Iteration. Such an operation
changes the row subspace and the eigenvalues of the matrix but
leaves the column subspace and the singular values unaltered.
Note however that the covariance of is normal. Taking the
covariance is an extreme example of an operation which renders
the result non-upper-triangular but which leaves the singular value
structure fundamentally unaltered (apart from a squaring, the
values are unchanged).

6. SIMULATIONS

In figure 2 a number of beampatterns are plotted for the case of two
30dB sources at  and . In each case the beamformer is
in the form of a generalised sidelobe canceller[4] with a look
direction of . The quiescent weight vector was designed to give
a -30dB Chebyshev weighted pattern. The upper curve was
calculated using ordinary QR factorisation to determine the
unconstrained contribution to the weight vector. The lower (solid)
curve gives the corresponding result when the unconstrained
weight vector is projected onto the signal subspace obtained with
the SVD. The sidelobe level is much reduced (and there is less
variation form batch to batch i.e. less “jitter”). The middle curve is
the result obtained using the Covariance Power Projection
algorithm with the covariance matrix but without the final
projection to produce the minimum norm solution. This curve has
lower sidelobes than ordinary QR but does not do as well as the
SVD (although it is found to greatly reduce the jitter). However, a
fourth curve is present on the same axes although it does not show
clearly because it is so close to the SVD result. This curve is the

approximate minimum norm solution obtained by using the full
Covariance Power Projection algorithm.

7. CONCLUSIONS

A QR based technique is presented which obtains a good
approximation to the minimum norm solution of the projection of
the least squares weight onto the signal subspace of the data
matrix, without performing an SVD. Theoretical difficulties
associated with conventional QR factorisation of the data are
overcome by applying the technique of Row-Zeroing QR to the
covariance matrix. Thresholding is simpler, the subspace estimate
is improved and the signal subspace estimate and least-squares
weight are obtained simultaneously without matrix inversion.
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