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ABSTRACT factorisation by backsubstitution i.e. no matrix inversion is
required. This one-sided projection and rank estimation technique
A QR based technique is presented for estimating the approximatéOSPRE) [7], however, lacks a formal guarantee to reveal the rank
numerical rank and corresponding signal subspace of a matrixof an arbitrary rank-deficient matrix. In fact, there is a well-known
together with the subspace projection of the least squares weightgounter-example[5] for which the algorithm fails. In this paper, it
Theoretical difficulties associated with conventional QR is shown that this same technique applied to the QR factorisation
factorisation are overcome by applying the technique of Row- of the covariance matrix produces a much better estimate of the
Zeroing QR to the covariance matrix. Thresholding is simplified signal subspace and also overcomes the problem case. The least
compared with the use of the data matrix as the diagonal valugsquares weight vector can still be obtained by backsubstitution and

spectrum is sharpened and the subspace estimate is improved. Agh approximation for the minimum norm solution to the projected
approximation to the minimum norm solution for the projection of \yeight is obtained for only a little further effort.

the least squares weight onto the signal subspace of the data is

obtained simply, without performing an SVD. We begin by reviewing the Row-Zeroing QR factorisation
technique which forms the basis of OSPRE in section 2. In section
3 we discuss the numerical linear algebra technique known as
Orthogonal Iteration. The new algorithm is introduced in section

1. INTRODUCTION 4. How the counter example due to Kahan [5] is overcome when

the new technique is used is discussed in section 5. The results of

A common requirement in adaptive processing of sensor array data computer simulation are presented in section 6.

is the estimation of the number of strong signals present and the

projection of both the data and the least squares adaptive weight 2. ROW-ZEROING

vector onto the signal subspace. Projection of the least-squares

weight vector onto a subspace of reduced dimension is anThe technique of Row-Zeroing in tligR  factorisation[7] enables

established technique for reducing the number of adaptive degreesank and subspace estimation without the need for iteration or

of freedom used by an adaptive sensor array. Conventionalpermutation. Consequently it is faster and is more readily made

algorithms for subspace estimation based upon eigenvalueecursive than Chan’s RRQR algorithm although it produces a

decomposition (EVD) or singular value decomposition (SVD) are, more approximate estimate of the rank and the signal subspace[8].

however, both expensive to compute and difficult to make The approach is essentialyR  factorisation computed using a

recursive. By contrast, algorithms based upon ordir@Ry version of modified Gram-Schmidt orthogonalisation. It proceeds

factorisation have established pipelineable architectures[6] forijn the usual way, constructing e matRy , say, row by row,

calculation of the least squares weight vector but are generallyy,t when a small diagonal element below some threshold , say,

unreliable for rank and subspace estimation[2]. Chan’s rank- s detected, that entire row &, is setto zero. When diagonal

revealing QR factorisation[1] (RRQR) transform@R entries of then column matriR, are left un-zeroed, the {f+1)
factorisation to a form guaranteed to reveal the rank of a rank'singular valueg, ,,(X) of thenxn data matr% s then
O+

deficient matrix by the use of column permutation operations. .

. : o . bounded by:
Despite the much reduced computational load, it is not simple to
design real-time hardware for the RRQR algorithm. It suffers from 0,1 (X)sa/n-r )
the same problems as the EVD or SVDin t'hat the need to pgrmut?'ence, for small enough  the rankXf is revealed to be at most
the columns of the matrix makes it a two-sided process and it alsor The subspace angle][ between the sianal subspace
requires an indeterminate number of iterative steps. . ubsp 9 :B]X ween t '9 ubsp

estimated using Row-Zeroing QR factorisation upon  and that

A computationally simpler technique for estimating the number of obtained from the SVD is bounded by[7]:
strong signals and projecting the least-squares weight vector onto _ o,,1(X)
the signal subspace has previously been presented in both block |sin(6y)| < o (R. ) 2
and recursive forms[7][8]. Based up@R factorisation, the nex.s
technigue is ideally suited to the adaptive null-steering problemin which Ry ¢ is obtained fronR, by deleting both rows and
because the least-squares weight is readily obtained from the QRolumns which contain a zeroed diagonal element.



Where it arises the occurrence of a small diagonal element on the
leading diagonal element & is a reliable indicator of rank-
deficiency. Moreover, Row-Zeroing then overcomes the whereF = RﬁR12 - Now whilstw, , can be obtained simply
corruption of the remainder &  which arises with conventional from the OSPRE algorithm, in general, it does not result in a beam
QR factorisation. This corruption would normally prevent the Pattern with low sidelobes. To achieve this the minimum norm

degree of rank deficiency from being determined. There isSOIUtIcm _(equatlon (8)) can be used wh|ch_ent_a_|ls ex_tra
however, no guarantee of any small diagonal elemeR in Whencomputatlon. In what follows we show that this difficulty is
X is rar,lk-deﬁcient Considyer for example, the overcome by applying the Row-Zeroing technique to the

_ ! UPPET covariance matrix or powers thereof. Before introducing this
triangular matrixk,, - due to Kahan([s]: approach, however, we discuss the numerical linear algebra
procedure known as Orthogonal Iteration.

-1
w, = (FF+) Flo, 4 t)

l1-c—c...—C

1-c..-cC 3. ORTHOGONAL ITERATION
) 1..-c 3)

0 . Orthogonal lteration[3] is a technique for estimating the
“dominant invariant subspac® (A) of a square complexn
matrix A i.e. the subspace spanned by the leagling eigenvectors
Where,c2+s2 = 1 . Chan[1] for example, uses the vaiue 50 u; of A associated with thg largest eigenvaldgs . The
andc = 0.2 . For this choice the diagonal valuekqf decreasetechnique proceed.s as follows: given a matrix A and some initial
smoothly from 1.0 to 0.368 and the singular values fiom ~ to N* d Matrix Qo with orthogonal columns:

K, =diag(1s 5 .. "

0,9 decay similarly smoothly from 4.635 to 0.411. The value of FOR k=1,2,...
O5q, however, i59.28710 > . The matrix is therefore rank- Z, = XQy_q
deficient but has no small entry on its leading diagonal. For this QR = Z, (QR decomposition)
: . . , < ©)
reason, the Row-Zeroing approach will clearly fail for Kahan’'s Q = [Q]1:q
matrix. END

In conventional QR-based least-squares minimisation we write theVhere the last step means select the girst  columns of the matrix
mxn data matrixX a = QR . The least squares weight Q. Forq = n and at iteratiok  Orthogonal Iteration generates

tri h th i :
vectorw , i.e. the solution tmin@E{ \X@+ y\z} is obtained from: square matrice®,  such't -Elf given by
Ty = Q AQ, (10)

H
Rw = -Q'y 4)

I - - converges to upper triangular form with increasing . Hence,
by backsubstitution. Now, it is not difficult to show that the Orthogonal Iteration converges to a Schur decompositiod of
subspace projection of the least-squares weight veotor  isprovided, theoretically, tha®, is not deficient in any of the
equivalent to the weight vector obtained from the least-squaresgigendirections). That is to say that:

problem with the projecteX matrix ayd . Thus, in OSPRE,
Row-Zeroing is applied to X in order to replaRe  in (4) with the
Row-ZeroedR matrbR, . This matrix is an approximation to the \here R is strictly upper triangular. Note, however, that the

“R"matrix inthe QR factorisation of the projection of ~ ontothe eigenvalues\; do not necessarily arise in decreasing magnitude
signal subspace. The resulting equationsfor ~ can then be writtenorder.

kIim T, = diag{}; : i=1, 2,..n} +R (11)

Ri1 Ryol |91 U 5) A general matrix A is said to be “normal” if:
W,

0 0 0 AA = An" (12)

For simplicity, the firstr rows oR are shown here as non-zero Furthermore, it is readily shown that an upper triangular matrix
(andu, as the first eIements@Fy ) but it in general this could which is normal has to be diagonal. Therefore, at convergence and

be any set of r rows. Notice that, is left undetermined. One assuming that A is a normal matri, = 0 and
solution for w is clearly: QEAQk = diag{A; : i=1, 2,...n} (13)

w, =0 and Riw; = -U; (6) The columns of),  will then be the (right) eigenvectors  (in the

wherew, is obtainable simply by back-substitution. The general appropriate order).

solution, however, is: Finally note that it is easy to show from equation (9) that with

—-1 = = .
W, = @l, 0~ R11R12@2 7 QO I (and pk n ) we have:
wherew, , is the solution fow,  from (6). There is therefore an A" = QRR, Ry = QR (14)

element of choice here fos, . One choice is to select the elementgyhere the last step definBg’  and follows because the product of
of w, in such a way as to minimise the normwf . This solution triangular matrices is also triangular. Hence, by virtue of its
can be written: uniqueness, the QR decomposition of the makx will produce



the orthogonal matrixQ,  that would appear at iteration k of the 1 og—

Orthogonal Iteration procedure. Thus the QR decomposition of A\ |
increasing powers of a normal matrix results in a sequence of N
orthogonal matrices that converge to the orthogonal matrix found% 081 \ .
in the EVD of the original matrix.

From equations (13) and (14), it is easy to show that

0.6 —

séd sinqular or diagonal v
%

N L H

R, = Q/AK=diag{Ak: i=1, 2,..n}Q, (15) 8 \ 1
for sufficiently large k. As the rows of the matI(D{| are of unit 5 0.4~ | o N
norm, it can be seen that the norm of the rowRgf ~ converge to§ | \ e e s x
the KN power of the eigenvalugl;, . Given these properties of a g o & Covariance of M

normal matrix and the QR decomposition of its powers, we are$ o.2i- -
now in a position to formulate the new algorithm.

4. COVARIANCE POWER PROJECTION ool 1 1 T HEFRTFEF IR

index
Let the covariance matrix of the dataMe= XHX and for some Figure 1. Diagonal Value Spectrum
power p writeM? = QuRwy - Then the normal equations give:

H 1 H In addition, the diagonal value spectrum of the R matrix is also
Ryw = —QMMp' Xy (16) sharpened - making thresholding easier. To see how this arises

. . T consider the simple case:
and we can again obtam by backsubstitution in the usual way. P

The Qata Tatw“ is not generally normal but the covariance X = [Xl Xz} : X, = A€, X, = Aje +E6, (18)
matrix M = X7X , and any power of M is normal since M is — = —= —= = £

Hermitian. Thus, using the results of the previous section, the QRNhere,el ance, are unitvectors ahg A,  ad are scalars.
decomposition of a suitably large power of the covariance matrix gy thiscase: —

will produce an orthogonal matrix that is approximately the matrix

of eigenvectors of M (i.e. right singular vectors of X). _ M A,

Furthermore, the norm of each row of the triangular factor will be R = (19)
the KN power of the eigenvalues. Thus if we proceed with the Row- 0 ¢

Zeroing technique of OSPRE, but with thresholding based uponwhereas for the covariance matrix:

the row norm instead of the diagonal element, we can determine

the signal subspace and project the least-squares weight vector 2,,2 2,42
onto it. The important point here is that the process is now Ry = )\1“/(7\1+}\2) )\ZJ()\N-)\Z) (20)
guaranteed to be rank-revealing in the lifit, o since the 0 2

eigenvalues of the covariance matrix are the squares of the singular ) )
values of the data matrix and only the latter are reliable indicatorsHence, forA; =2, the ratio of the first to the second diagonal

of rank. This provides encouragement that in pradRge will element in (20) is the square of that for (19) i.e. the gap between
tend to be rank-revealing and give good subspace estimates foihe diagonal elements is widened. A similar argument holds for
some finite, and possibly smald, . successive powers of the covariance matrix.

Now, it has been observed experimenta”y that the diagona|The effectiveness of this approach is illustrated in figure 1. The
element of the triangular factor in the QR decomposition is often Spectrum of diagonal values for the different techniques is
one of the largest elements in the row. Thus we can expect that theompared with the singular value spectrum for a particular case of
diagonal elements of the triangular factor will be indicative of the 5 signals of 20dB power with respect to noise. For a fair
norm of that row i_e)\ik . Thus it may be possible to perform the Comparison thezvalues in the diagonal value spectra obtained for
thresholding based only on the value of the diagonal elements.M and forM™~ are raised to the powels'2  atd4

Indeed, if we use the Row-Zeroing technique upoh to give respectively. All the spectra were then normalised by their largest
Ry o Say, it is easy to see that the analytic error bound upon thevalues. The ordinary QR diagonal value spectrum of the data
subspace angle corresponding to (2) is now given by: shows no discernable gap at all. Using the covariance sharpens the
b diagonal spectrum as predicted. A further (albeit smaller)
O- M . . . . . .
sin(By,)| < r+1(M7) 17) improvement in the diagonal value spectrum is then obtained using
o(R ) MM in place of\V
MP, s
This is a tighter bound than that upég sinog, l(M'D) is Finally note that, as in section 2, the projected least-squares weight
(o, 1(X))2P and, in practice, one finds.(R , ) Dor(Rs)zp . vector produced by the above method (OSPRE with as input)

Hence the subspace estimate is correspon(%ngly more accurate.

2. These results are not due simply to a “squaring” of the data

1. This may look odd at first sight but remember that it is only true  matrix. Whilst the net information content of the matrix is the
for k - o . In general the right hand matrix is dense but with same, columns of the covariance contain information from all
small elements below the diagonal if k is sufficiently large. sensors and not just from one sensor alone as in the data.



is not the minimum norm solution. However, the Q matrix fromthe o
decomposition contains estimates of the right singular vectors of
the data matrix X. Thus, a projection operator can be constructec
that is an approximation to that which would result from having
calculated the SVD of X. This is used to approximate the
minimum norm solution by projecting the weight produced from -
OSPRE. This process constitutes the proposed “Covariance Powe
Projection Algorithm”. The algorithm is clearly not suited to
implementation in a pipelined form. However, it is possible to
form the covariance matnx Hom the trLanguIar factor R of the data
matrix sinceX X = R 'Q QR = R R . Thus, a practical 10
implementation can consist of a recursive updating of R (standarc
QRD-RLSJ[6]) and then, whenever subspace projection is required,
the R matrix can be used, off-line, to form the covariance matrix -°
(which involves fewer operations than formib(d_lx ) or a power
thereof, to use as the input to OSPRE.

5. RESOLVING THE PROBLEM CASE
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Figure 2. Adapted Beampatterns

Whereas a small diagonal element on the leading diagonal of th@pproximate minimum norm solution obtained by using the full
“R” matrix in a QR factorisation does indicate rank-deficiency Covariance Power Projection algorithm.

when it arisesthere isno guarantee of this arisinghen a matrix

is rank-deficient. This can now be seen as a consequence of the 7. CONCLUSIONS

difference in general between the eigenvalues and singular values

of a matrix. The reason that Kahan's matrix is difficult to handle is A QR based technique is presented which obtains a good
because its eigenvalues are different from its singular values and i@pproximation to the minimum norm solution of the projection of
particular because the former reveal no gap. Secondly, arthe least squares weight onto the signal subspace of the data
additional difficulty with K, for algorithms based on QR matrix, without performing an SVD. Theoretical difficulties
decomposition is the upper triangular structure itsedf,- is its associated with conventional QR factorisation of the data are
own triangular factor. Upset this structure by a simple column overcome by applying the technique of Row-Zeroing QR to the
interchange and the rank-deficiency soon becomes apparent bgovariance matrix. Thresholding is simpler, the subspace estimate
one or two steps of Orthogonal Iteration. Such an operationis improved and the signal subspace estimate and least-squares
changes the row subspace and the eigenvalues of the matrix bwteight are obtained simultaneously without matrix inversion
leaves the column subspace and the singular values unaltered.
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