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ABSTRACT In this contribution we focus oMUSIC [4], WSF[3] and MDL

. . ... [5] algorithms. These methods are summarized and adapted to
This paperladdres_ses thﬁ problems of bl'nd_ channel t?s“m;"t'onblind channel identification in a subspace fitting approach. The
and symbol detection with second order statistics methods from paper is organized as follows. In Section 2 data model and its

th_e repeived dat_a. It can be shc_)wn _that this problem is S‘”_‘”af to subspace approach are formulated. In Section 3 we extend the
Direction Of Arrival (DOA) estimation, where many solutions subspace-fitting framework @posed by Viberg [3] to blind

like th_e .MUSlC e_llgorithm_kolrh “weighted’_’ htechniques (@S channel identification and formulate the cost functions whose
Deterministic Maximum  Likelihoodor Weighted Subspace  nimization/maximization will allow estimating the channel.
Fitting method) have been developed. In this proposal we extend afer that, the Gauss-Newton algorithm that solves this problem
these techniques to blind channel identification problem in an 5 jeyeloped. In section 4 some simulation results are presented

;m'f'ed flr(arr;ework_ known asShubspac_e Fitting In tr"‘:c_s_ , and discussed. Finally, we present some conclusions and outline
ramework the estimated and the received data are “fitting our future work in section 5.

through the subspaces in a least square sense. Then, in order to

solve this problem and estimate the channel, a modified Gauss-

Newton type algorithm is suggested. Simulations are carried out 2. PROBLEM FORMULATION
comparing the proposed solutions with a classical signal

subspace-based blind channel identification scheme. 2.1 Data Model

For simplicity, we assume only one emitter. két) denote the
1. INTRODUCTION transmitted symbol at timeT whereT is the symbol duration.

Digital communications through channels with multipath This discrete time signal is modulated, filtered, transmitted over a

phenomena are subjected to intersymbol interference. ThisGaulst.s'anb che;)nnzl, .flltegehd iﬂd down ‘bar.1d converted. The
problem can be so severe that correct reception of the transmitte§ESU!IING Paseband signal has the expression.

symbols is not feasible anymore. It is necessary therefore to ©
equalize the channel, which implies to estimate the channel. y(t) = x(t) +n(t) = ZS(k)h(t—kT)+n(t) (1)
Since Tong, Xu and Kailath showed in [1] that it is possible to K==

obtain an estimation of the channel from a second order statisticSamp"ng this signal at baud rate, the resulting discrete signal
of the received signal, seed order statistics have substituted to will be a stationary process in wi’de sense. In that case, only

high order statistics in channel estimation. minimum-phase channels could be recovered from second order

Due to its high-resolution capability, many subspace—basedstatistics. As showed Tong, Xu and Kailath [1], when the
methods have been developed in order to recover signaleceived signal is oversampled (for examplétatmes the baud
parameters. These methods are based on the singular valu@te), the resulting discrete signal becomes cyclostationary,
decomposition (SVD) of a matrix constructed from the observed Which allows to recover the phase of the channel from second
signal, which provides a robust discrimination between desiredorder statistics. Moreover, this oversampling strategy allows
and disturbing signals in terms of signal and noise subspacesmodeling the channel as a single-input multiple-output FIR
The general objective is to find a low-rank subspace with a shift SystemM-oversampling the received signal, we have:

structure that has minimal distance to the true signal space, or L

equivalently, that is as orthogonal to the noise subspace as Yi(n)=ylt, +(i—1)A+nT):ZS(n—I)h(I)+n(n); i=1.M (2)
possible. Viberg and Ottersten formulate in [3] different methods =

in a common subspace fitting based framework, providing an WhereA is the new sample ratd£T/M) and the highest order of
overview of the DOA estimation problem and clarifying the the resulting discretel-multichannel system ils+1.

algebraic relations between the algorithms. Let h=[h(0), h(1), ... , L)]" and definingy;(n)=[y:(n+W-1),
yi(n+W-2), ..., yn)]" as a window ofV consecutive samples:
yi(n) =H; (W) $(n) +n;(n) @)
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Generalitat of Catalonia, CIRIT, 1996SGR-00096. (W+L) matrixH;(W) is defined as:
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Stacking theM vectorsy;(n) yields theMW-dimensional vector

yo=pim yio - yhof (5)
And the received signal gives:
y(n) =H(W)3(n) +n(n) (6)

With H(W) the MW x (W+L) matrix resulting of stacking thel
H;(W) matrices,y(n) a wide-sense cyclostationary process and
n(n) aMW vector. On the other hand, to assure identifiabikity,

should have full column rank. Conditions under this occur can be

found in [2] and references therein.

2.2 Subspace Approach

The additive noisen(n) is modeled as a Gaussian, stationary,

fitting problem in DOA estimation proposed by Viberg &
Ottersen [3], we have that, given some representation of the data
M, we should to find an estimation lofandT such that

_ . _ 2
hT —argrEle\M H(h)EI'HF (11)

Where h=|h] h] hI,l]r and |

Froebius norm. This is a separable problem, and substituting the
solution of the first partT = H*M into (11) (the superscrigt
denotes the pseudoinverse operator), this gives the generic
subspace fitting cost function:

h= argmhinV(h) with V(h)=|( -Py)M|% = Tr{PE M M H}(12)

iis the quadratic

WhereP,=H-H" is the LS projector onto the column spaceélof
Py =1 -P, is the orthogonal LS projector and Jrflenotes the

trace operator. AM is a representation of the data, different
choices oM will provide different cost functions (criterions).

3.1.1 MUSICcriterion.

The MUSIC criterion is based on orthogonality between signal

white and zero mean random process. For simplicity we take agng poise subspaces. The cost function derived from (10) can be

spatially white noise, i. e., itdW x MW covariance matrix yields
R, = E[n(n)-n"(n)] = o*I, where the function H[ denotes
mathematical expectation and superscriptis the hermitic
operator. The covariance matrix of the received signal is:

Ryy =y 0= fim & Sy ) =R A" R, (0

WhereRg is the covariance matrix gfand full column rank. The
signal subspace is defined as the space spanned by colukhns of

and the noise subspace is its orthogonal complement. Both

subspaces can be obtained from the SVD of covariance matrix:

MW
=Y AE @ =ENE+E,NE] (8)

1=1

Ry

With A;>0? for i=1,....r (signal eigenvalues=W-+L), A= for
i=r+1,...,MW (noise eigenvalues)\s= diag@; ... A;) andA,=
diag@+1 ... Auw). Defining theMW x r matrix Es and theMW x
MW-r matrix E,:

Es:[esl €s; es,r]? Eo:[eo,l €2 eo,MW-r] 9

Since columns o, span the signal subspace and columris,of
the noise subspace, orthogonality between subspaces provides:

el H=0 fori=1,.., MW-(W+L) (10)

3. WEIGTED SUBSPACE FITTING

3.1 Cost Functions

Since covariance matriRy, is in practice estimated from a
limited amount of eceived data, only an approximationRyf; is

available. Then, (10) has to be solved in a least square sens
Adapting to blind channel identification the basic subspace

written as:

W-r

V )
MusIC h E
( ) r

2
eo: ElHH =

g DHHi =Tr{HHEOEOHH} (13)

This is the MUSIC cost function. Since in DOA problem (13)
does not give accurate results when the signal are highly
correlated, Schmidt [4] introduced a normalization matrix
(H"H) "t into (13), resulting th#ulti-Dimensional(MD) MUSIC
algorithm:

h= argrq]inVl(h)

V,(h) :Tr{(HH ) Y, DH}:

:Tr{PH £, EI‘E';}:Tr{PH Eﬂl -E EY )} (14)
As the trace of a projection operator is equal to the dimension of
the subspace on which it projects, minimizi¥g(h) gives the
same result that maximizing V, (h) :Tr{PH [E EY =
:Tr{(l —PE)EI“ESD“E;'}, and the cost function oMD-MUSIC
algorithm can be expressed as:

h= argrq]inVMD—MUSIC(h)

vy =Tr{ps &, &Y} (15)

MD - MUSIC

Thus, theMD-MUSIC algorithm is a subspace fitting method
where the representation of data is directly given by the signal

subspaceM =E,.

3.1.2 DeterministicML criterion.

Described by Bohme [5], this method try to maximize the log
éikelihood of the eceived dat&¥ with respect tatH and S (the
columns of theMW x N, matrix Y are theN, snapshotg(n) with



n=1..Ne and the columns of th@V+L) x N, matrix S are theN, Consider first the gradient of the cost function. Introducing the
transmitted symbol vectorgn)). This is equivalent to minimize  yector by stacking the columns & M , the cost function can

. . v 2
with respect tdh the cost funCtlonVMDL (W =[Y-HS[; . The be written asV (h) :\r\z. The first derivative oM with respect

i i i S= + i * . - .
solution of the first part giveS=H" ¥ and the cost function to i (complex conjugate of thi& element oh) is:

becomes:
_ : . _ o o
h —argn?lanMDL(h) with V,\,,DL(h)—Tr{PH IZIRyy} (16) (;:]i/ :ZEahri gr ot :2.”832? ™0 o EME (20)
; ]
Connection with subspace fitting can be made using asymptotic H
arguments (see [3]). For lardé,, we have thatA, - a?l, The derivative of the projection matrix is:
R,, - E.INEY +6?0 and A=A,-0?0. As the trace of o
Zny - s s -S . - aPH :_aPH :_PE[H_liEH_l+_(PE[H_|iEH_I+)H (21)
0°P, is a constant, the cost function is asymptotically (for large ohy oh

Ne) equivalent to: oH
Where now H; =I (do not confuse withH;(W) defined in

Vo (h)=Tr{P B, AN } 17) ,
. H . . .
Therefore, the deterministic ML method is a sumsp fitting (4)). SinceH" (P =P} Eﬂ"“) =0, the derivative yields:
technique where the data are represented by the weighted signal Vv
subspaceM =E [Wy5, (with Wyp =A). ‘;h* :—2Tr{HiH Py M M ¥ EﬂH*)H} 22)
3.1.3 WSFcriterion. Consider now the Hessian matrix. Differentiate (20) with respect

The deterministic ML method allows to us to introduce the to hj we obtain:

weighted subspace-fitting concept. This is: 22V

. . =2 m, +rf @ 23
h = argminV,yse(h) with Visr () =T PIE WisrEH } (18) aron, (23)

WhereWysris a positive definite weighting matrix. The question The Gauss modification of the Newton method assumes that the
is to find a weighting matritVysr that makes the estimation residual (i. e., the" term in (23)) is small compared to the first
statistically (for largeN,) efficient, i. e.; that makes th&/SF term (see [6]). For largde hy will be close to the optimum and
estimates asymptotically achieve the Cramer-Rao lower bound orthe noise variance will be small. Then, we can approximate the
the variance of the estimator error. Viberg and Ottersten [3] haveHessian matrix byG; = ZmiH [, , and we have thar;“rj is:

shown that the optimal choice falNwse is Wyyse = A°AZL.

Thus, theWSF criterion can be expressed in (13) when the Tr@-ﬁHHi’*PEH?‘H*+PEHiH+H*HH’J.*PEE\/|M H@(24)

representation of the datalig = E [(Wpa- .

The Kaufmanns's modification of the algorithm consists on
3.2 Modified Variable Projection Algorithm delete the second term in (24). This approximation can be hold
because this term is small if the residual is small. Moreover the
In order to estimate the channel, the criterion function in (18) second term in (24) cancels part of the second term in (23). With
must be minimized over th(L+1)-dimensional vectoh. The these suppositions, thg" component of the approximate
technique that we propose is thodified Variable Projection Hessian matrix is:
(MVP) method (see [6] and references therein). This scheme is a
Kaufmanns’s modification of the Gauss-Newton method: G :z'rr@H‘f)H |:|]-|iH [pE |:|]-|J.H IZIH"B]M ™ H@ (25)
Consider the nonlinear least square problem given by (13), one

of the more efficient, globally convergent, optimizing method for Then, (19), (22) and (25) give theVP algorithm. In order to

unconstrained smooth criteria is the damped Newton SCherm"obtain a good initialization of the estimates, we can use the
The estimate is iteratively calculated as: 9 '

MUSIC algorithm proposed by Moulinest al. [2]. This
sy = — 1 G (19) approach will provide a good estimation of the channel, and the
algorithm will achieve a global minimum. The step length factor
With g the step length the Hessian matrix of the cost function should be chosen in order to guarantee global convergence. It is
andv’ the gradient. Every iteration the Hessian and the gradientknown that quadratic convergence of Newton-type algorithms is

are evaluated . If h is well initialized, the Newton method ~ only achieved if the step length factor converges to unity.
guarantees an ultimate quadratic convergende.to Derivation of some convergence factors can be found in [7].



4. SIMULATION RESULTS

A Monte Carlo simulation is carried out in order to evaluate the
performance of the algorithms in a digital communication
system. We emitted a burst &f=128 BPSK symbols. The
oversampling rate (i.e. the number of virtual channeld)l3g.

The higher order of this virtual channels (ISl) is seL+@ and

the width of the temporal window W=4.

First, we computed th&lean Square estimation ErrqiMSE)
along the time (iterations) with a SNR of 10 dBs. We talke -
(0.1). The @ iteration corresponds to the MSE provided by
MUSIC algorithm proposed in [2]. Results of 100 Monte-Carlo
runs are presented in Fig. 1.
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Figure 1. MSE along the iterations.

As can be seen, in less than four iterations the permanent state
achieved, and the minimum of the error is given at first iteration.
As is expected, the&/SFcriterion gives the most accurate results.
Unfortunately, theMD-MUSIC algorithm (i.e. weighting matrix
set to identity) does not improve the MSE giverMiySIC.

The second experiment consists on computind@th&rror Rate
(BER) as function of SNR with 40 Monte-Carlo simulations and
4 iterations of théVP algorithm. In Fig. 2 results are presented.

On the other hand, simulations of BER have shown that channel

estimations provided bWVP algorithm with 1 and 4 iterations
virtually give the same BER.
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Figure 2. Bit error rate of the estimation.

As can be seen, bothVP techniques improve in 2 dBs the
MUSIC algorithm proposed in [2]. On the other hamdDL
method has slightly better results in BER. Note that the minimum
MSE does not guarantee the best BER.

5. CONCLUSIONS

The Modified Variable Projectioralgorithm has been developed
and applied in a blind channel identification context. As it is
shown in the figures, weighted subspacehoés$ provide more
accurate results than théUSIC method developed by Moulines

et al in [2]. However, thevVP algorithm it is not a good choice

in the unweighted method presented here (Ehe-MUSIC
method). On the other hand, the weighting matricedi. and
WSF methods were defined for DOA problem; as channel
estimation is not the same problem another weighting matrix can
be derived for this specific situation as was done in [8]. Another
simulations have been carried out in order to test the behavior of
weighted algorithms with larger bursts. Results have shown that
at larger sample size, less difference in MSE exists between
MUSIC and the proposed algorithms. Therefore we can conclude
that the weighting matrices defined MDL and WSF criterions

are useful in low sample sizes.
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