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ABSTRACT

We propose amethod for image regi stration which seemsto be use-
ful under the threefollowing conditions. First, bothimagesareglo-
bally and roughly the result of atranslation and rotation. Second,
some occlusions due to moving objects occur from image 1 to im-
age?2. Third, becauseof changesof illumination, contrast may have
changed globally and even locally. Under such unfavorable con-
ditions, correlation-based global registration may become inaccu-
rate, because of the global compromise it yields between several
displacements. Our method avoids these difficulties by defining
a set of local contrast invariant features in order to achieve con-
trast invariant matching. A voting procedure allows to eliminate
"wrong” matching features dueto the displacement of small objects
andyieldssub-pixel accuracy. Thismethod wastested successfully
for registration of watcheswith moving handsand for road control
applications.

1. INTRODUCTION

There are roughly three kinds of techniques for registration. We
refer to the excellent review by [2] and references therein. Most
techniques are based on global or local correlation and lead to fast
computationsin the Fourier domain [5], [13, chapter 9]. A second
kind of method (like [11]) first computes some image salient fea-
tures, which should be sufficiently stableto appear in both images.
Thesefeatures may be semi-local (regions coming from a segmen-
tation procedure) or very local, like edge points and corners. They
may be very heavy in computational cost, since local features may
have lots of matches. The method we have explored can be clas-
sified in semi-local methods. Its main ideais to match grey-level
based neigborhoods, that is, connected regions whose grey level
is between two values. Let us call these regions sections. If we
change the contrast of an image, the set of all sectionsis globally
invariant.

Thisisaslight generalization of a classical mathematical mor-
phology representation of the image by connected components of
level sets [6, 9]. Also, the idea of defining grey-level based re-
gionsin theimage is proposed by Yaroslavsky [13] in order to de-
fine adaptive filtering and in [12] where it is explicitly aimed at
stereo-matching. The considered neighborhoodsin[12] are not con-
trast invariant, however. Another related method is [1], where the
same neighborhoods are used for “image intersection” in satellite
imaging.

In contrast to local correlation methods, the proposed method
does not fix any a priori neighborhood for matching. This may be
an explanationfor its better performanceasit isfor the Yaroslavsky

neighborhood based filtering. The semi-global methods permit to
take advantageof global enoughfeaturesfor accuratedisplacement
estimation. Also, they arelocal enough (since there are sections of
any size) to raise the hope that many sections in both images are
not altered by any occlusion. Aswe shall seein the experiments,
when the images are small-sized and with occlusions, correlation
may fail where contrast invariant voting worksreliably.

2. A CONTRAST INVARIANT APPROACH

2.1. The Shapes

We model achange of contrast as a strictly increasing, continuous
real function g. If u isafirstimageand v theresult of another snap-
shot of the same scene, then arough model for the alteration of «
intowv isv = g(u) [3].

Let usdefine formally upper and lower level sets of the image
by

Xru={e/u(@) < p}, Hu={a/u@) > A}

and the sections by X{ = X, N X*. Thenit is easily seen that
XYW gou = Xy and Xynygou = X, sothat these sets of fea-
tures are globally contrast invariant (every section of « isasection
of v and conversely). Since we checked that the matching algo-
rithm works much faster and reliably enough with connected com-
ponents of upper and lower level sets, we shall call them “shapes’
in the following.

2.2. Matching of Componentsof L evel Sets

In order to perform fast matching, we proceed, asitisclassical (also
usedin [1]) by computing global characteristicsfor each shape: its
area, its barycenter (first order moments), and second order mo-
ments. Thesemomentscanbecombinedtoyield rotationandtrans-
lation invariant characteristics [8]. Consider the matrix of inertia
of the shape S:

where u(SW) = fs(x Szs)' (y ©ys)dedy and (z s, ys) isthe
barycenter of .S. Now consider therotated and translated version of
S, RS + t. Then ]Res-l-t = Ry Is R_p sothat Det ]Res-l-t =
Det Isanddso Tr I, 5,4 = Tr Is. Two shapes S and S’
extracted from «; and u. respectively, are considered to be can-



didatesto matching if:

Asgs = Agi
S5 od Detls = Detly
Trls = Trilg

Notice that in order to allow small deformations of the shapesand
to avoid quantization effects, we do not impose a strict equality. A
typical difference of a characteristic can be between 10 % and 20
%.

2.3. Voting

The voting procedure we use is similar to the one describedin [4].
We compute our registration as the isometry of the plane compati-
ble with a maximum number of correspondencesz; — y; (where
x; andy, are the barycentersof .S; and S7) and S; in thefirstim-
age and S; in the second image match. Now, there are infinitely
many rotation-translations that map =, to y; for agiven (i, 7). If,
in addition, we can find another correspondence.Sy — S; suchthat
le: Swx|| = ||yj @ykﬂl # 0, then there is only one rotation-
translation compatible with both correspondences:

||(:cl Szr) Ay, @yk)H

sinf = 5
lw: <
(i ©wxr).(y; ©Yy)
cosf = 5
lw: <
t = Y; @Rew,‘(z Y, <:>R9:ck)

The voting procedure accepts this rotation-translation (that isin a
3-D parametersspace). Thefinal selectedrotation-translationisthe
one getting the maximum of votes.

3. THE SUBPIXEL ACCURACY REGISTRATION

Note that the result obtained is not very precise, due to the neces-
sary quantization of the unknown parameters, and evenrefining the
quantization step is not very satisfactory becausethe peak of votes
would simply become blurred. Typically, this vote gives a preci-
sion of the order of onepixel. If wewant abetter estimation (andin
most applicationsit is very important [10]), we begin by selecting
all shapesin both images which have obtained a correspondence
compatible with the winning rotation-translation. We say that S;

and S; arein correspondenceif:

S; — S; and ||y, & Rew: &t <e )

wheree isagiven threshold. Thenwe can proceedto a” bootstrap”
estimation of the rotation translation by a least squares minimiza-

tion:
arg min
nin >

RN s,—>s;

0wt ¢ o |

A difficulty arises, because the problem is (apparently) nonlinear
due to the fact that ¢ appearsin the form of cos # and sin 6. We
introduce a scale factor s, so that the problem becomeslinear:

. S1
arg mlntz H ( s

$1,82,
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If all goeswell, the optimal scale parameter s = +/s2 + s3 should
becloseto 1, and thencos § = s, /s andsin § = s2/s.

Noting S = (s1 s2)7 and taking into account the equality

( S1. 52 )331 =AY S where AW = ( Ti Y ) )

82 81 Y Ty

we can rewrite equation (2) into
argmip 3[40+t ey, |7 ©

In order to solve equation (3), we compute the partial deriva-
tives relative to the parameters and equate them to 0. This yields
the system

{ZA@TAMS + (ZA“))Tt - ZA“)TyJ
STAW S + Nt = Yy,

with N being the number of matchings compatiblewith the modes.
After some easy algebraic manipulations, we get

{Z AOTAD 5L (a0 (T A(z‘))} S
T Ay, e (24 (L)
¢
¥ [y, @AY 5]

which allows to compute the vector .S and after the vector ¢.
To compute S, we haveto invert the 2 x 2 matrix

T
ZA(i)TA(i) @% (Z A(z‘)) (Z A(z‘))

which by Cauchy-Schwarz inequality is singular if and only if all
the A() are proportional, that is all the #; are aligned, which is a
very special case.

4. EXPERIMENTS

4.1. Comparison with Correlation Based Registration

We have compared our voting procedure with the most classical
Fourier-based correlation. If the two images »; and u, arerelated
by asimpletranslation, uz () = u; (@ <t), thenthe Fourier Shift
theorem gives the following relation between their Fourier trans-
forms [5]:

Fus(€) = e~ E P Fuy(8)

(where Fu(¢) = | u(az)e_m'gd:c) then the unknown translation
vector ¢ can be isolated by the formula:

6—i€.t _ Fui(§)Fuz(f)
| Fui(§)]?

—1 Tul(ﬁ)]:ul(ﬁ) _
d ( Fu @) )‘5t @

which provides avery simple algorithm to estimate the translation
vector t.

We show in figure 1 an example of the registration of an im-
ageof awatch, for which the preceding Fourier registration method
does not yield the true rotation-translation. Notice that the hands,
whosemotion isnot compatiblewith theglobal rotation-translation,

so that



do not disturb the accuracy of the morphological registration obvi-
ously because of the voting procedure. Figure 2 shows the projec-
tion of the votesin the parameter-space along the three axes (4, ¢,
ty). Notice the sharpness of the peaks, showing that the votes are
unambiguous.

Figure 1: Top: two original images (size:512 x 512) of the same
watch at different times (data: SMH Automation). Bottom: the av-
erageimage of the images after aFourier registration (left), the av-
erageimageafter contrastinvariant registration (right). Noticehow
the Fourier registration lets all symbols onthe watch blur and fade.

Figure 3 is an example of the registration of outdoor images.
Dueto thewind, the camerarotated between the two shots and the
true displacement is more complex than just a rotation-translation.
This experiment illustrates the difference between global registra-
tion and voting procedures: noneof both canyield the” right match-
ing”, since this matching is not an isometry. Now the global corre-
lation yields an average displacement, which is true nowhere. The
voting procedure selectsa part of the image where displacementis
accurate (the left hand part of the image) and of course wrong on
the other part. Figure 4 showsthe votes for the three parameters.

4.2. Subpixel Accuracy of the Algorithm

To measure the accuracy of the registration, we took an image of
size 1280 x 1014 (containing 3250 shapes), applied it atranslation
and arotation and then zoomed it out by a factor 2, to obtain an
image of size 640 x 507. Then atranslation of an odd number of
pixelsin the original image correspondsto half an integer transla-
tion in the reduced image. The translation and rotation is made by
anearest neighbor interpolation in the original image. The results
of the algorithm are shown in Table 1.

From this table, we can observe that the precision concerning
the angle is very good. We have a precision of the order of afew
hundredths of degree. Concerning the translation, the results seem

fo 0w @0 20 0 2 # s ® 10 -0 w0 @ 40 2 0 2 a0 8 10
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Figure 2: The votes for the three parameters for the images of a
watch in figure 1. There are 5072 shapes of area greater than 20
pixelsin the first image, and 4961 in the second image. The algo-
rithm found 4065 correspondences.

at first sight less good. Typically, we have a precision of the or-
der of a quarter of pixel, but it is often better. Remember that we
used a hearest neighbor interpolation to transform the original im-
age, which hastypically a precision of half a pixel, which makesa
quarter of pixel in the reducedimage. Sothe error of the algorithm
is of the same order as the one of the interpolation. We could not
hope a better result with this kind of interpolation. Following this
idea, we can see that for an integer number of pixels for the trans-
lation and no rotation, we have much more correspondences(more
than 2500, instead of 1200 or lessotherwise) thanin the other cases.
This corresponds to the case where there is actually no interpola-
tion. Inthis case, wehaveaprecision of afew thousandthsof pixel.
In each experiment, the measured scalefactor s did not differ from
the value 1 by more than 10~°,
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Figure4: Thevotesfor thethree parametersfor the outdoor images
of figure 3. There are 4979 shapesof area greater than 20 pixelsin
thefirstimage, and 4612 in the secondimage. Thealgorithm found

1589 correspondences.
0, to by [ 166 | |t otu] | 1t oty] | Corr. |
0,0.5,0.5 251072 [ 1.31071 [ 1.31071 | 1241
0,1,1 1.2107% | 341077 | 3.310~ 2757
0,1.5,1.5 251072 | 1.4107" | 1.6107" | 1194
0,2,2 28107% [ 131072 | 27107% | 2741
0,10, 10 23107 [ 97107* | 40107" | 2652
0,10.5,10.5 || 1.91072 | 1.2107 | 1.0107 " | 1145
0,11.5,11.5 || 1.71072 | 1.1107* | 1.0107" | 1136
0.3,7.5,1.5 || 241077 [ 1.6107 | 23107 | 1550
1,25,25 7.010=° | 241072 | 14107 " | 1211
5,26.5,13.5 || 1.8 107" | 3.1107" | 421077 | 975
10,20,17.5 || 2.7107° | 3610~ " [ 251071 | 883
20,30.5,10 [ 5.7107° | 7.61072 | 1.2107" | 723

Table1: Measurementsof the accuracy of the algorithm for several
rotations and translations. Theexact rotation and translation (6, ¢,
t,) is compared to the measured one (4, ¢, t,). We give also the
number of correspondences, Corr.



