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ABSTRACT

We propose a method for image registration which seems to be use-
ful under the three following conditions. First, both images are glo-
bally and roughly the result of a translation and rotation. Second,
some occlusions due to moving objects occur from image 1 to im-
age 2. Third, becauseof changesof illumination, contrast may have
changed globally and even locally. Under such unfavorable con-
ditions, correlation-based global registration may become inaccu-
rate, because of the global compromise it yields between several
displacements. Our method avoids these difficulties by defining
a set of local contrast invariant features in order to achieve con-
trast invariant matching. A voting procedure allows to eliminate
”wrong” matching features due to the displacementof small objects
and yields sub-pixel accuracy. This method was tested successfully
for registration of watches with moving hands and for road control
applications.

1. INTRODUCTION

There are roughly three kinds of techniques for registration. We
refer to the excellent review by [2] and references therein. Most
techniques are based on global or local correlation and lead to fast
computations in the Fourier domain [5], [13, chapter 9]. A second
kind of method (like [11]) first computes some image salient fea-
tures, which should be sufficiently stable to appear in both images.
These features may be semi-local (regions coming from a segmen-
tation procedure) or very local, like edge points and corners. They
may be very heavy in computational cost, since local features may
have lots of matches. The method we have explored can be clas-
sified in semi-local methods. Its main idea is to match grey-level
based neigborhoods, that is, connected regions whose grey level
is between two values. Let us call these regions sections. If we
change the contrast of an image, the set of all sections is globally
invariant.

This is a slight generalization of a classical mathematical mor-
phology representation of the image by connected components of
level sets [6, 9]. Also, the idea of defining grey-level based re-
gions in the image is proposed by Yaroslavsky [13] in order to de-
fine adaptive filtering and in [12] where it is explicitly aimed at
stereo-matching. The consideredneighborhoodsin [12] are not con-
trast invariant, however. Another related method is [1], where the
same neighborhoods are used for “image intersection” in satellite
imaging.

In contrast to local correlation methods, the proposed method
does not fix any a priori neighborhood for matching. This may be
an explanation for its better performance as it is for the Yaroslavsky

neighborhood based filtering. The semi-global methods permit to
take advantageof global enough features for accurate displacement
estimation. Also, they are local enough (since there are sections of
any size) to raise the hope that many sections in both images are
not altered by any occlusion. As we shall see in the experiments,
when the images are small-sized and with occlusions, correlation
may fail where contrast invariant voting works reliably.

2. A CONTRAST INVARIANT APPROACH

2.1. The Shapes

We model a change of contrast as a strictly increasing, continuous
real function g. If u is a first image and v the result of another snap-
shot of the same scene, then a rough model for the alteration of u
into v is v = g(u) [3].

Let us define formally upper and lower level sets of the image
by

X�u = fx = u(x) � � g ; X�u = fx = u(x) � � g

and the sections by X�
� = X� \ X

� . Then it is easily seen that
X g(�)g �u = X�u andXg(�)g �u = X�, so that these sets of fea-
tures are globally contrast invariant (every section of u is a section
of v and conversely). Since we checked that the matching algo-
rithm works much faster and reliably enough with connected com-
ponents of upper and lower level sets, we shall call them “shapes”
in the following.

2.2. Matching of Components of Level Sets

In order to perform fast matching, we proceed, as it is classical (also
used in [1]) by computing global characteristics for each shape: its
area, its barycenter (first order moments), and second order mo-
ments. Thesemoments can be combined to yield rotation and trans-
lation invariant characteristics [8]. Consider the matrix of inertia
of the shape S:

IS =

�
�2;0S �1;1S

�1;1S �0;2S

�

where �(i;j)S =
R
S
(x � xS)

i(y � yS)
jdxdy and (xS; yS) is the

barycenterofS. Now consider the rotated and translated version of
S, R�S + t. Then IR�S+t = R� IS R�� so that Det IR�S+t =

Det IS and also Tr IR�S+t = Tr IS . Two shapes S and S0

extracted from u1 and u2 respectively, are considered to be can-



didates to matching if:

S ! S0 ,

(
AS

�= AS0

Det IS �= Det IS0

Tr IS �= Tr IS0

Notice that in order to allow small deformations of the shapes and
to avoid quantization effects, we do not impose a strict equality. A
typical difference of a characteristic can be between 10 % and 20
%.

2.3. Voting

The voting procedure we use is similar to the one described in [4].
We compute our registration as the isometry of the plane compati-
ble with a maximum number of correspondencesxi ! yj (where
xi and yj are the barycenters of Si and S0j ) and Si in the first im-
age and S0j in the second image match. Now, there are infinitely
many rotation-translations that map xi to yj for a given (i; j). If,
in addition, we can find another correspondenceSk ! S0l such that
kxi � xkk =



yj � yk



 6= 0; then there is only one rotation-
translation compatible with both correspondences:

sin � =



(xi � xk) ^ (yj � yk)




kxi � xkk
2

cos � =
(xi � xk):(yj � yk)

kxi � xkk
2

t = yj � R�xi(= yl � R�xk)

The voting procedure accepts this rotation-translation (that is in a
3-D parameters space). The final selected rotation-translation is the
one getting the maximum of votes.

3. THE SUBPIXEL ACCURACY REGISTRATION

Note that the result obtained is not very precise, due to the neces-
sary quantization of the unknown parameters, and even refining the
quantization step is not very satisfactory because the peak of votes
would simply become blurred. Typically, this vote gives a preci-
sion of the order of one pixel. If we want a better estimation (and in
most applications it is very important [10]), we begin by selecting
all shapes in both images which have obtained a correspondence
compatible with the winning rotation-translation. We say that Si
and S0j are in correspondence if:

Si ! S0j and


yj �R�xi � t



 � � (1)

where � is a given threshold. Then we can proceed to a ”bootstrap”
estimation of the rotation translation by a least squares minimiza-
tion:

arg min
�;t

X
i;j = Si!S0

j



R� xi + t� yj



2
A difficulty arises, because the problem is (apparently) nonlinear
due to the fact that � appears in the form of cos � and sin �. We
introduce a scale factor s, so that the problem becomes linear:

arg min
s1;s2 ;t

X




�

s1 �s2
s2 s1

�
xi + t� yj






2

. (2)

If all goes well, the optimal scale parameter s =
p

s21 + s22 should
be close to 1, and then cos � = s1=s and sin � = s2=s.

Noting S = (s1 s2)
T and taking into account the equality�

s1 �s2
s2 s1

�
xi = A(i)S where A(i) =

�
xi �yi
yi xi

�
;

we can rewrite equation (2) into

argmin
S;t

X

A(i)S + t� yj



2 : (3)

In order to solve equation (3), we compute the partial deriva-
tives relative to the parameters and equate them to 0. This yields
the system� P

A(i)TA(i) S +
�P

A(i)
�T

t =
P

A(i)T yjP
A(i) S + N t =

P
yj

withN being the number of matchings compatible with the modes.
After some easy algebraic manipulations, we get8>>><
>>>:

hP
A(i)TA(i) � 1

N

�P
A(i)
�T �P

A(i)
�i

S =P
A(i)Tyj �

1
N

�P
A(i)
�T �P

yj
�

t =
1
N

�P
yj �

P
A(i) S

�
which allows to compute the vector S and after the vector t.

To compute S, we have to invert the 2� 2 matrix

X
i

A(i)TA(i) �
1

N

 X
i

A(i)

!T  X
i

A(i)

!

which by Cauchy-Schwarz inequality is singular if and only if all
the A(i) are proportional, that is all the xi are aligned, which is a
very special case.

4. EXPERIMENTS

4.1. Comparison with Correlation Based Registration

We have compared our voting procedure with the most classical
Fourier-based correlation. If the two images u1 and u2 are related
by a simple translation, u2(x) = u1(x� t), then the Fourier Shift
theorem gives the following relation between their Fourier trans-
forms [5]:

Fu2(�) = e�i�:tFu1(�)

(whereFu(�) =
R
u(x)e�ix:�dx) then the unknown translation

vector t can be isolated by the formula:

e�i�:t =
Fu1(�)Fu2(�)

jFu1(�)j2

so that

F�1
�
Fu1(�)Fu1(�)

jFu2(�)j2

�
= �t (4)

which provides a very simple algorithm to estimate the translation
vector t.

We show in figure 1 an example of the registration of an im-
age of a watch, for which the preceding Fourier registration method
does not yield the true rotation-translation. Notice that the hands,
whosemotion is not compatible with the global rotation-translation,



do not disturb the accuracy of the morphological registration obvi-
ously because of the voting procedure. Figure 2 shows the projec-
tion of the votes in the parameter-space along the three axes (�, tx,
ty). Notice the sharpness of the peaks, showing that the votes are
unambiguous.

Figure 1: Top: two original images (size:512 � 512) of the same
watch at different times (data: SMH Automation). Bottom: the av-
erage image of the images after a Fourier registration (left), the av-
erage image after contrast invariant registration (right). Notice how
the Fourier registration lets all symbols on the watch blur and fade.

Figure 3 is an example of the registration of outdoor images.
Due to the wind, the camera rotated between the two shots and the
true displacement is more complex than just a rotation-translation.
This experiment illustrates the difference between global registra-
tion and voting procedures: none of both can yield the ”right match-
ing”, since this matching is not an isometry. Now the global corre-
lation yields an average displacement, which is true nowhere. The
voting procedure selects a part of the image where displacement is
accurate (the left hand part of the image) and of course wrong on
the other part. Figure 4 shows the votes for the three parameters.

4.2. Subpixel Accuracy of the Algorithm

To measure the accuracy of the registration, we took an image of
size 1280�1014 (containing 3250 shapes), applied it a translation
and a rotation and then zoomed it out by a factor 2, to obtain an
image of size 640 � 507. Then a translation of an odd number of
pixels in the original image corresponds to half an integer transla-
tion in the reduced image. The translation and rotation is made by
a nearest neighbor interpolation in the original image. The results
of the algorithm are shown in Table 1.

From this table, we can observe that the precision concerning
the angle is very good. We have a precision of the order of a few
hundredths of degree. Concerning the translation, the results seem
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Figure 2: The votes for the three parameters for the images of a
watch in figure 1. There are 5072 shapes of area greater than 20
pixels in the first image, and 4961 in the second image. The algo-
rithm found 4065 correspondences.

at first sight less good. Typically, we have a precision of the or-
der of a quarter of pixel, but it is often better. Remember that we
used a nearest neighbor interpolation to transform the original im-
age, which has typically a precision of half a pixel, which makes a
quarter of pixel in the reduced image. So the error of the algorithm
is of the same order as the one of the interpolation. We could not
hope a better result with this kind of interpolation. Following this
idea, we can see that for an integer number of pixels for the trans-
lation and no rotation, we have much more correspondences (more
than 2500, instead of 1200 or less otherwise) than in the other cases.
This corresponds to the case where there is actually no interpola-
tion. In this case, we have a precision of a few thousandths of pixel.
In each experiment, the measured scale factor s did not differ from
the value 1 by more than 10�6 .
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Figure 4: The votes for the three parameters for the outdoor images
of figure 3. There are 4979 shapes of area greater than 20 pixels in
the first image, and 4612 in the second image. The algorithm found
1589 correspondences.

�, tx, ty j~�� �j j~tx � txj j~ty � tyj Corr:

0; 0:5; 0:5 2:5 10�2 1:3 10�1 1:3 10�1 1241
0; 1; 1 1:2 10�4 3:4 10�4 3:3 10�3 2757
0; 1:5; 1:5 2:5 10�2 1:4 10�1 1:6 10�1 1194
0; 2; 2 2:8 10�4 1:3 10�3 2:7 10�4 2741
0; 10; 10 2:3 10�4 9:7 10�4 4:0 10�4 2652
0; 10:5; 10:5 1:9 10�2 1:2 10�1 1:0 10�1 1145
0; 11:5; 11:5 1:7 10�2 1:1 10�1 1:0 10�1 1136
0:3; 7:5; 1:5 2:4 10�3 1:6 10�1 2:3 10�1 1550
1; 25; 25 7:0 10�3 2:4 10�2 1:4 10�1 1211
5; 26:5; 13:5 1:8 10�3 3:1 10�1 4:2 10�1 975
10; 20; 17:5 2:7 10�3 3:6 10�1 2:5 10�1 883
20; 30:5; 10 5:7 10�3 7:6 10�2 1:2 10�1 723

Table 1: Measurements of the accuracy of the algorithm for several
rotations and translations. The exact rotation and translation (�, tx ,
ty) is compared to the measured one (~�, ~tx, ~ty). We give also the
number of correspondences,Corr.


