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ABSTRACT

Blind equalization of a communication channel using a prediction-
based Lattice Blind Equalizer (LBE) is considered. Second order
cyclostationary statistics and a single-input multiple-output model
arising from fractional sampling of the received data are used. The
performance of the LBE algorithm is studied in extensive sim-
ulations where commonly used example channels are employed.
Convergence in the Mean Square Error (MSE) and Symbol Error
Rate (SER) as well as the number of symbols required to open the
eye are studied at different SNRs. Robustness in the face of chan-
nel order mismatch and channels with common subchannel zeros
is considered. The simulation results are compared to the results
obtained by the fractionally spaced Constant Modulus Algorithm,
the Cyclic-RLS algorithm and the subspace method by Moulines
et al.

1. INTRODUCTION

Second-order cyclostationary (CS) statistics are the basis of most
recent blind channel equalization/identification algorithms. Since
[1] and [2], research has focused on methods based on the CS-
statistics for practical purposes; shorter data sequences and less
computations are required than with higher-order-statistics (HOS).
Despite the quest for practicality, few CS-based algorithms have
been designed to be adaptive in time and to have a feasible compu-
tational complexity for a real-time communication environment.
Adaptivity is needed, because the equalizer must account for the
time-varying channel. Also, the computational burden of block-
type algorithms can be decreased, if the equalizer parameters are
computed in a recursive manner.

The prediction-error approach, originally published in [3], has
great potential for an adaptive implementation. Many algorithms
have been developed to recursively obtain the prediction error,
which is a part of the solution to the blind equalization problem.
In our earlier work [4], a Least Squares Lattice (LSL) algorithm
was used to construct the Lattice Blind Equalizer (LBE). Adaptive
prediction was also used in [5] in conjunction with mutually refer-
enced signals. The correlation matrix based blind equalizer of [6]
can be implemented adaptively by the Cyclic-RLS (CRLS) algo-
rithm. The CS-based equalizers of [6] were shown to equivalent to
the prediction based equalizers in [4].

In this paper, the performance of the LBE is studied with simu-
lations and compared to the CRLS and the fractionally spaced ver-
sion of the Constant Modulus Algorithm (FS-CMA) (c.f. [7]). The
FS-CMA uses HOS implicitly and it has become popular due to its
adaptivity and simplicity of implementation. The performance of
the block-type subspace-based algorithm [8] is also given for ref-
erence purposes.

This paper is organized as follows: The system model is de-
scribed in section 2. The considered algorithms are introduced
briefly in section 3. The simulation results are presented in sec-
tion 4. SER and MSE curves are given and the number of received
symbols required to open the eye are measured. Robustness to in-
accurate channel order estimation and to channels with common
subchannel zeros is also studied. Finally, section 5 concludes the
paper.

2. SYSTEM MODEL

The output of a linear communication channel at timet is

y(t) =

∞X

k=−∞
x(k)h(t− kT ) + v(t) (1)

whereh(t) is the complex baseband channel impulse response,
x(k) the sequence of complex information symbols andv(t) ad-
ditive noise. WhenP samples per symbol are available at the re-
ceiver, we can consider a multichannel model, where at timenT a
vectory(n) = [y0(n), . . . , yP−1(n)]T is received,()T denoting
transposition. The outputyi(n) of each subchannelhi(n), n =
0, . . . , P − 1 can be written as

yi(n) =

Lh−1X

k=0

x(n− k)hi(k) + vi(n) (2)

wherevi(n) are samples ofv(t) corresponding toyi(n). The max-
imum length ofhi(n) is Lh. The channel impulse response can
also be represented as a vectorh(n) = [h0(n), . . . , hP−1(n)]T .

The multichannel communication system can be equalized
with a fractionally spaced equalizer (FSE) that is organized into
P parallel filter banks, as shown in Fig. 1 forP = 2. The equal-
ization is possible if the subchannels do not have any common
zero [9]. Equalizergi(n) is used in cascade with the subchannel
hi(n). The equalizer coefficients are collected in a vectorgd =
[gT (0), . . . , gT (M)], whereg(n) = [g0(n), . . . , gP−1(n)]T and
d denotes the equalizer delay. We consider a finite symbol se-
quence of lengthM and define an(MP × 1)-vectoryM (n) =
[yT (n), . . . ,yT (n−M + 1)]T . The output of thed-delay equal-
izer is then

x̂(n− d) = gdyM+1 (3)

Because the system output is sampled at symbol rate, the over-
all impulse response seen at the equalizer output is

ΣP−1
i=0 hi(n) ∗ gi(n) (4)

where∗ denotes convolution.
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Figure 1: A multichannel communication system.

3. ALGORITHMS

In this section, the adaptive LBE-algorithm is briefly presented.
The adaptive CRLS and FS-CMA as well as the block-type sub-
space algorithm of Moulines et al. [8] are also considered.

The LBE was introduced in [4]. The linear one-step predic-
tion error vector ofy(n) is denoted byfM(n) and its covariance
matrix byPf,M , whereM is the prediction order. The zero-delay
MMSE-equalized symbol estimate is now [10]

x̂(n) = σ2
xh

H(0)P−1
f,M fM (5)

whereσ2
x is the variance of the transmitted symbol. The LBE uses

the adaptive LSL-algorithm [11] to recursively compute the pre-
diction error and its covariance matrix. The parameters of the
lattice filter are the reflection coefficient matricesκf,m(n) and
κb,m(n) (Fig. 2). The forward and backward prediction errors of
orderm are obtained asfm(n) = fm−1(n) +κf,m(n)bm−1(n−
1) andbm(n) = bm−1(n− 1) + κb,m(n)fm−1(n), respectively.
The covariance matrixPf,m is also obtained recursively. In the
LBE, the required first channel coefficient vectorh(0) is obtained
adaptively by eigen-vector and eigen-value tracking ofPf,m [12].
The computations are recursive both in the prediction orderm and
timen, which provides several benefits in a real-time communica-
tion environment. In addition, lattice filters have advantages over
transversal filters. No block-type initialization nor exact knowl-
edge of the channel order is needed.
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Figure 2: A lattice predictor.

In the simulations, the LBE is compared to two adaptive equal-
izers and one block-type algorithm. The first adaptive equalizer
was introduced in [6]. It includes the inversion of the block-
Toeplitz correlation matrixRy = E[yM+1y

H
M+1], where()H de-

notes Hermitian transposition. The equalizer was shown in [4] to
be equivalent to (5). The matrix inversion can be performed re-
cursively resulting in the adaptive CRLS-algorithm. A short block
type matrix inversion is used for initialization. As opposed to the
LBE, the first channel coefficienth(0) is assumed known in this

approach. The second adaptive algorithm that the LBE is com-
pared to is the FS-CMA, c.f. [7]. Due to the fractional sampling,
the local minima inherent in the error surface of the symbol-spaced
CMA-algorithm can be avoided. Similarly to the algorithms using
second-order CS-statistics, the subchannels are not allowed to have
any common zero. Simplicity of implementation is the main ad-
vantage of the FS-CMA. Finally, the subspace-based equalizer of
[8] — denoted here by SBE — is also used in the simulations. The
algorithm exploits the orthogonality property between the signal
and noise subspaces ofRy . Eigen-decomposition provides vectors
spanning the subspaces. A matrix containing equalizers of various
delays can be constructed. The disadvantages of the method are
high computational complexity and block type estimation.

4. SIMULATION RESULTS

In this section, the performance of the LBE is studied in simula-
tions. All channels that are used areT/2 fractionally spaced. The
channels are described in the following:

• Channel 1 is a minimum-phase channel of length4T . See
[6] and [4] for details.

• Channel 2 is an empirically measured mixed-phase micro-
wave channel. The magnitude of its impulse response is
shown at the top of Fig. 3. The leftmost zero-plot of Fig. 3
shows the zeros of theT/2-spaced channel. In the center,
the zeros of the individual subchannelsh0(n) andh1(n)
are shown with a circle and a cross, respectively. The right-
most plot shows the zeros of the SIMO channel as seen by
the receiver, i.e.h0(n) + h1(n).

• Channel 3 is a minimum-phase channel that has subchan-
nels with exactly common zeros. The zero-locations are
[−0.2736−0.3917i, 0.0074−0.4999i, −0.4560+0.2706i,
−0.2472 + 0.3870i, 0.5213− 0.0539i, 0.4149 + 0.1422i,
0.1961 + 0.7765i].

• Channel 4 is modified from channel 3 by changing the zero
−0.2736 − 0.3719i of both subchannels to−0.9500 −
0.8380i. The channel has exactly common zeros and is
mixed-phase.

Channel 2 was obtained from the web-sitehttp://spib.rice.edu/spib
/microwave.htmland was further time-decimated to length 16 as
explained in [13]. Channels 3 and 4 were modified from the near-
common zero channel used in [13] and [6].

The equalizer performance is evaluated after every 100 re-
ceived symbols. The performance criteria are the sample esti-
mate of the SER and the MSE. A test set of 1000 symbols is used
at each point and the results are averaged over 100 Monte-Carlo
runs. Nevertheless, for high SNRs the number of symbol errors
can remain too low for the SER to be statistically reliable. In these
cases the number of runs is increased as needed. The channel in-
put is a white 16-QAM sequence with unit variance. The addi-
tive noise is white and Gaussian. The SNR is defined as in [6]
as SNR:= E[ΣP−1

j=0 |y′j(n)|2/ΣP−1
k=0 |vk(n)|2], wherey′j(n) is the

signal component ofyj(n).
The LBE produces zero- or maximum-delay equalizers only.

The other algorithms can be applied to arbitrary-delay equaliza-
tion. All equalizers were forced to zero-delay equalization in order
to make the results comparable. The CRLS has a block-type ini-
tialization period of 100 symbols and the first channel coefficient
h(0) is assumed to be known. The channel order is required in the
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Figure 3: Channel 2 impulse response magnitude and zero loca-
tions.

SBE. None of the above assumptions are needed in the LBE nor
in the FS-CMA. At first, however, the order of all the equalizers is
chosen equal to the channel order in the simulations.

Channel 1 is considered first. The SER achieved by the LBE
after 500, 1500 and 2500 received symbols is presented as a func-
tion of the SNR in Fig. 4. For a 16-QAM constellation, the eye can
be considered open below a SER of 0.04 (c.f. [13]). The number
of symbols needed to achieve this limit by the different equalizers
is plotted in Fig. 5. SNRs of 15–30 dB were used in the simula-
tions with a grid of 2.5 dB. At the SNR of 15 dB and 17.5 dB, no
equalizer opens the eye within 2500 received symbols. The LBE
is the first algorithm to do so at higher SNRs. Although the block
versions of the LBE and the CRLS are equivalent, the adaptive
versions behave differently. One major difference is the CRLS-
algorithm’s sensitivity to initialization. Additionally, the perfor-
mance of the LBE is expected to degrade faster at low SNRs, be-
causeh(0) is estimated from the noisy data. The SBE does not
function well at low SNRs, but its performance improves rapidly
as the noise power decreases.

The corresponding plot for channel 2 is shown in Fig. 6. Now
the CRLS and the FS-CMA are able to open the eye already at the
SNR of 17.5 dB. In general, the FS-CMA outperforms the other
methods. The convergence of the adaptive equalizers in the MSE
at the SNR of 30 dB is plotted in Fig. 7. No major difference can
be noted after the effects of initialization have died down. In [4],
the robustness of the LBE to inaccurate channel order estimation
in the MSE-criterion was noted. On the other hand, the SER of
all the adaptive equalizers increases with the channel order mis-
match. The FS-CMA seems to be the most sensitive of the three
algorithms. This can be seen from Fig. 8, where the equalizer
orders of 6–16 were used and the SER was evaluated after 1000
received symbols at the SNR of 30 dB. The channel order is 7.

The LBE and the CRLS function well even for channel 3,
as seen in Fig. 9. Similar results were obtained in [14]. Also
the FS-CMA opens the eye, as opposed to the SBE. The mixed-
phase channel with common subchannel zeros (channel 4) cannot
be equalized by any of the algorithms. The LBE and the CRLS
converge in the MSE-criterion, but the eye remains closed.

5. CONCLUSIONS

The prediction-based adaptive LBE-algorithm using second order
cyclostationary statistics was studied in simulations. The results
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Figure 4: SER after 500, 1500 and 2500 symbols, channel 1.
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Figure 5: Open eye for channel 1.

indicate that the proposed method provides a good overall perfor-
mance in a variety of situations. The LBE and the CRLS behave
in a similar fashion, as expected. For channel 1, they perform sig-
nificantly better than the FS-CMA. For channel 2, the FS-CMA
is the fastest to open the eye, but is more affected under channel
order mismatch. For the minimum-phase channel with equal sub-
channel zeros, the LBE and CRLS once again cope better than the
FS-CMA. All the techniques considered in this study fail to equal-
ize the corresponding mixed-phase channel.

When complexity is considered, the LBE has an advantage
over the CRLS, because it does not have a need for a block ini-
tialization period and its implementation enjoys the benefits of the
lattice structure. Also the problem of obtaining the first channel
coefficient is solved implicitly in the LBE. The extreme simplicity
of the FS-CMA makes it very attractive for implementation. How-
ever, the complexity of the LBE is also low when a small number
of samples per symbol is taken.
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