
THE EFFECTS OF FINITE BIT PRECISION FOR A VLSI IMPLEMENTATION OF THE

CONSTANT MODULUS ALGORITHM

L. R. Litwin, Jr.�, T. J. Endresy, S. N. Hulyalkary, and M. D. Zoltowski�

Purdue University� and Sarno� Digital Communicationsy

ABSTRACT

One of the most popular blind equalization techniques
is the Constant Modulus Algorithm (CMA), and it has
gained popularity in the literature and in practice be-
cause of its LMS-like complexity and its robustness to
non-ideal, but practical, conditions. Although CMA
has been well-studied in the literature, these analyses
have typically implemented the algorithm using \in�-
nite" precision arithmetic. The motivation for this pa-
per is a VLSI implementation of a high data rate, frac-
tionally spaced, linear forward equalizer whose taps are
adjusted using CMA. In this paper we examine how im-
plementing CMA using �nite bit precisions a�ects the
algorithm's performance.

1. INTRODUCTION

The Constant Modulus Algorithm (CMA) was origi-
nally proposed by Godard [1] for QAM signals and
independently by Treichler and Agee [2] for constant
envelope FM signals. CMA has seen recent theoretical
growth (summarized in [3]) and has also been success-
fully deployed [4]. Although CMA has been deeply
studied in the literature, virtually all of these analy-
ses have been made under the assumption that the al-
gorithm would be implemented using \in�nite" preci-
sion. We will use the term in�nite precision throughout
this paper to refer to two cases: 1) when mathematics
are performed under the assumption that each num-
ber has in�nite precision, and 2) when simulations are
run using numbers represented with the full precision
of the computer. We are interested in the �nite pre-
cision implementation of CMA and our motivation is
a VLSI hardware implementation of CMA using �xed
point arithmetic.

Section 2 is a brief primer to CMA and its tap up-
date equation. Section 3 discusses the �xed point arith-
metic that is typically used for high-speed hardware de-

�Department Of Electrical Engineering, Purdue University,
West Lafayette, IN 47906, litwin(mikedz)@ecn.purdue.edu

ySarno� Digital Communications, Suite 100, 6 Penns Trail,
Newtown, PA 18940, endres(samirh)@sdcomm.com

signs that involve mathematics. Section 4 describes the
assumptions and settings used for the �nite precision
simulations of CMA. Section 5 presents the simulation
results. Section 6 provides concluding remarks.

2. THE CONSTANT MODULUS ALGORITHM

CMA is a gradient descent technique that is used to
minimize the cost function described by the Constant
Modulus (CM) criterion. This cost function can be
written as

JCM = Ef(
 � jynj
2)2g (1)

where
 is a positive constant known as the Godard
radius and yn represents the equalizer output at baud
instance n.

The CMA tap update equation performs a stochas-
tic gradient descent of JCM and it is written as

fn+1 = fn + �r�n yn(
 � jynj
2)

| {z }

CMA error term

(2)

where � is a small, positive constant called the step-
size, fn is the length-M vector of equalizer taps at time
n, and rn = [rn rn�1 rn�2 : : : rn�M+1]T is the re-
gressor vector formed from the M most recent equal-
izer input samples. Complex conjugation is denoted by
the asterisk.

The successful use of CMA in practical receiver im-
plementations has been a motivation for researching re-
duced complexity versions of CMA. A recent advance
in the area of reduced complexity is signed-error CMA
[5] which replaces the usual CMA error term with its
signum (+/-1). An extension of signed-error CMA
is dithered signed-error CMA [6] which introduces a
dithering term to the CMA error term prior to the
signum operation in order to preserve CMA's robust-
ness properties.

Development of reduced complexity versions of
CMA is important for high-speed VLSI applications
because reduction in the complexity of the algorithm
leads to hardware designs with higher operating speeds

and/or lower gate counts. Hence, since (2) requires a
full complex multiply for each equalizer tap, the im-
plementation of (2) to process high data rate signals
is often a computational bottleneck and the allocation
of bit widths to the components of the CMA update
equation is of foremost practical interest. This paper
examines the e�ects of �nite bit precision on the per-
formance of CMA by assigning �nite bit widths to the
components of (2).

3. FIXED POINT ARITHMETIC

This section describes the �xed point representation of
numbers and it also lists the major e�ects of using �nite
precision arithmetic.

3.1. Representation of Fixed Point Numbers

Although numbers in a VLSI design can be represented
in
oating point format (mantissa and exponent), �xed
point arithmetic is the typical format for high speed
designs. In particular, this paper focuses on the e�ects
of implementing CMA using two's complement �xed
point arithmetic.

In the two's complement �xed point format, aB�bit
number's most signi�cant bit (MSB) represents the sign
of the number, and the lower B � 1 bits represent the
magnitude. Thus, a B�bit number can represent num-
bers from �(2B�1) to (2B�1�1). In two's complement
arithmetic, the negative of a binary number is formed
by inverting each bit of the number and adding a 1 to
the least signi�cant bit (LSB).

3.2. E�ects Of Finite Precision Arithmetic

Finite precision arithmetic can have severe e�ects on
the algorithm's performance. In particular, there are
three major types of errors that can occur due to �nite
precision arithmetic [7].

1. Data And Coe�cient Quantization Errors

When representing the data or the �lter coe�-
cients with B bits, the total number of possible
values that the data or coe�cients can take on is
2B. Hence, the data or the coe�cients are quan-
tized to one of the 2B levels, which introduces
quantization noise resulting in a decrease in the
e�ective SNR.

2. Truncation/Rounding Errors

Truncation and rounding errors occur when a
number is converted from a given precision to a
lower precision. For example, when multiplying
the data and the error term in (2), the bit width

of the result increases (multiplying two numbers
of bit widths a and b results in a number of bit
width a + b). In order to maintain a reasonable
complexity for the multipliers/adders, this result
is truncated and errors are introduced due to the
reduced precision.

3. Over
ow/Under
ow Errors

Over
ow (under
ow) errors occur when the re-
sult of a calculation is too large (small) to be
represented with the allocated bit width. When
an arithmetic calculation results in an over
ow
(under
ow), the result is typically clipped [7] to
the maximum (minimum) value possible for that
number of bits. This clipping operation induces
nonlinear distortion in the signal.

The presence of these e�ects stresses the importance of
assigning the appropriate number of bits to the compo-
nents of each mathematical operation. The simulation
results presented in this paper show how the manifes-
tation of the above errors a�ects the performance of a
�nite precision VLSI implementation of CMA.

4. ASSUMPTIONS/PARAMETER SELECTIONS

This section describes the assumptions and parameter
selections that were used for the simulation results pre-
sented in section 5.

4.1. Assumptions

All data is fractionally sampled with a spacing of T=2
where T is the symbol period. The channel models are
derived from experimentally acquired microwave data
and they are available at the SPIB database1. Speci�-
cally, channels 1 and 2 are used, and they are 300 and
230 samples long, respectively. The source sequence for
each simulation consists of 150,000 T=2-spaced sam-
ples. The 75,000 symbols are taken from an equally
probable 64-QAM alphabet. The mean-squared error
(MSE) value that is shown in all of the �gures is com-
puted by averaging the instantaneous MSE over the
last 25,000 symbols.

In order to simulate the �xed point arithmetic used
in hardware, the result of each operation is rounded to
an integer value and then clipped to make sure that
the result is within the range of possible values for the
number of assigned bits. The entire computation of the
tap update term is performed with a precision of 32

1The Rice University Signal Processing Infor-
mation Base (SPIB) channel database resides at
http://spib.rice.edu/spib/microwave.html

bits. This high precision is used to isolate the e�ects of
using reduced precisions for just the data and the taps.

We use Bdata to denote the number of bits used
to represent the data, and Btaps to denote the tap bit
precision used when multiplying the data in the com-
putation of (2). For the results shown in Figures 1 and
2, the taps are stored at 32-bit (full) precision, but only
the upper Btaps bits are used to multiply the data. In
Figure 3, the taps are stored at reduced precision, and
only Btaps (where Btaps < 32) bits are used for both
the storage of the tap values, and for the computation
of (2).

4.2. Parameter Selections

1. A 16-tap fractionally-spaced equalizer (FSE) is
used for Channel 1, and a 32-tap FSE is used for
Channel 2.

2. A single spike initialization is used for the taps in
all simulations. This initialization involves set-
ting the center tap to unity and all other taps to
zero. For the 16-tap equalizer, the center tap is
tap position 8, and for the 32-tap equalizer, the
center tap is tap position 16.

3. The value used for the step-size is � = 2�22. This
value is speci�cally chosen to be a power of two
because it can be implemented in hardware as
a simple right-shift by 22 bits as opposed to an
actual multiply.

5. SIMULATION RESULTS

The approach taken in performing the simulations was
to �rst hold the data precision at Bdata = 20 bits while
varying the tap precision from Btaps = 4 bits to 20 bits
and recording the MSE for each setting. Subsequently,
the tap precision was held at 20 bits while the data
precision varied from 4 bits to 20 bits. No noise was
present for either case. The purpose of this approach
was to determine \good" settings to use for further
simulations. The results of these simulations are shown
in Figure 1. Note that a tap bit precision of 9 bits
yields an MSE similar to that for a tap bit precison of
20 bits. Also note that a data bit precision of 6 bits
yields an MSE similar to that for a data precision of 20
bits. The e�ects of quantization appear when using 5
bits for the data, although an aggressive design might
perform adequately using this precision. However, 6
bits is preferable. 5 bits appears to be the lower limit,
as evidenced by the jump of over 10 dB for the MSE
when only 4 bits are used.

Although these simulations were only done for two
channels, from the results we can extrapolate that, in

general, the taps are more sensitive to �nite bit preci-
sion e�ects compared to the data (this is an expected
result based on the analysis of �nite bit precision e�ects
on FIR �lters in general, for example, see [7]). Due to
this increased sensitivity to �nite bit precision, the taps
of the CMA equalizer should be assigned a higher pre-
cision than that assigned to the data. In fact, based on
the results shown here and on other simulation results,
we hypothesize that a good rule of thumb for the tap bit
precision is \data bits plus three," i.e. pick an accept-
able value for Bdata and assign Btaps = Bdata + 3 bits
for the taps. Based on this rule of thumb, we suggest
that Bdata = 6 and Btaps = 9 would be good precisions
to use for 64-QAM and this class of channels, and for
a more aggressive design, Bdata = 5 deserves study.

In order to further test this hypothesis, we selected
the more aggressive case of Bdata = 5 and Btaps = 9
and ran simulations with an SNR level of 24 dB and for
no noise. The results are presented in Figure 2. The top
plot �xes Bdata = 5 and varies the tap precision, while
the bottom plot �xes Btaps = 9 and varies the data
precision. Note that for our proposed precisions (and
all precisions above that), the noise has the e�ect of
\lifting" the curve. However, for the points below our
proposed precisions, the e�ects of noise do not cause
a signi�cant change in performance. This is because
the quantization e�ects dominate at these precisions.
From these results, we can state that, for this class of
channels, the values of Bdata = 5 and Btaps = 9 are
adequate precisions for 64-QAM, and one might want
to use Bdata = 6 to be conservative.

For the results presented above, the taps are stored
at a precision of 32 bits, and only the upper Btaps are
used to multiply the data. Further simulations were
run to examine the e�ects of storing the taps at re-
duced precisions. The MSE trajectories are shown in
Figure 3. In the case of reduced precision, the stated
value for Btaps is the bit precision used for both storing
the taps and used in (2). Note that when the taps are
stored at the same reduced precision used to calculate
(2), about twice the bit width is needed to achieve sim-
ilar performance as when the taps are stored at higher
precision. These results emphasize the importance of
storing the taps at a high precision, even though only
a lower precision is needed for the multiplication of the
data.

6. CONCLUSIONS

We have shown how a �xed point VLSI implementa-
tion of CMA will su�er a performance loss due to the
e�ects of �nite bit precisions. Based on an admittedly
limited data set, our results suggest that Bdata = 6

bits and Btaps = 9 bits are good settings to use for
64-QAM, and Bdata = 5 bits should be looked at for
an aggressive design. Future work needs to look at how
these settings perform on other channels. The results
have also shown that the taps need to be stored at a
higher precision than what is adequate for multiplying
the data. Future work needs to determine a su�cient
bit width for the tap storage. The CMA error term was
computed using 32 bits, and more simulations need to
be run to determine if a smaller bit width still provides
adequate performance.

4 6 8 10 12 14 16 18 20
−30

−25

−20

−15

−10

−5

0

5

Bit Precision Of Taps

M
S

E
 (

db
)

Channel 1
Channel 2

4 6 8 10 12 14 16 18 20
−30

−25

−20

−15

−10

−5

0

5

Bit Precision Of Data

M
S

E
 (

db
)

Channel 1
Channel 2

Figure 1: The top plot shows the MSE for Bdata = 20
with varying tap precision and no noise. The bottom
plot shows the MSE for Btaps = 20 with varying data
precision and no noise.

5 6 7 8 9 10 11
−25

−20

−15

−10

−5

0

Bit Precision Of Taps

M
S

E
 (

db
)

No Noise
SNR = 24 dB

4 5 6 7 8 9 10
−24

−22

−20

−18

−16

−14

−12

−10

Bit Precision Of Data

M
S

E
 (

db
)

No Noise
SNR = 24 dB

Figure 2: The top plot shows the MSE for Bdata = 5
with varying tap precision. The bottom plot shows the
MSE for Btaps = 9 with varying data precision. Both
plots are for Channel 2.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−24

−22

−20

−18

−16

−14

−12

−10

Symbol Number

M
S

E
 (

dB
)

7−bit Taps

8−bit Taps

9−bit Taps

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−24

−22

−20

−18

−16

−14

−12

−10

Symbol Number

M
S

E
 (

dB
)

13−bit Taps

14−bit Taps

20−bit Taps

Figure 3: The top plot shows the MSEs that resulted
from storing the taps at full (32-bit) precision. The
bottom plot shows the MSEs that resulted from storing
the taps at reduced (Btaps�bit) precision. Both plots
are for Channel 2 with Bdata = 5 and no noise.

7. REFERENCES

[1] D.N. Godard, \Self-recovering equalization and carrier
tracking in two-dimensional data communication sys-
tems," IEEE Trans. on Communications, vol. 28, no.
11, pp. 1867-1875, Nov. 1980.

[2] J. R. Treichler, B. G. Agee, \A new approach to mul-
tipath correction of constant modulus signals," IEEE
Transactions on Acoustics, Speech, and Signal Pro-
cessing, vol. ASSP-31, no. 2, pp. 459-72, Apr. 1983.

[3] C. R. Johnson, Jr., P. Schniter, T. J. Endres,
J. D. Behm, D. R. Brown, R. A. Casas, \Blind Equal-
ization Using The Constant Modulus Criterion: A Re-
view," to appear in Proceedings of the IEEE, Sep.
1998.

[4] J. R. Treichler, M. G. Larimore, J. C. Harp, \Practical
blind demodulators for high-order QAM signals," to
appear in Proceedings of the IEEE, Sep. 1998.

[5] M. Ghosh, \A Sign-Error Algorithm For Blind Equal-
ization Of Real Signals," International Conf. on
Acoustics, Speech and Signal Proc., Seattle, WA, pp.
3365-68, May 12-15, 1998.

[6] P. Schniter, C. R. Johnson, Jr., \The Dithered Signed-
Error Constant Modulus Algorithm," to appear in
IEEE Transactions on Signal Processing, 1998.

[7] J. G. Proakis, D. G. Manolakis, Digital Signal Process-
ing: Principles, Algorithms, and Applications, New
Jersey: Prentice Hall, 1996.

