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ABSTRACT

We discuss the shift invariant properties of a new
implementation of the Discrete Wavelet Transform,
which employs a dual tree of wavelet �lters to obtain
the real and imaginary parts of complex wavelet co-
e�cients. This introduces limited redundancy (2m:1
for m-dimensional signals) and allows the transform to
provide approximate shift invariance and directionally
selective �lters (properties lacking in the traditional
wavelet transform) while preserving the usual proper-
ties of perfect reconstruction and computational e�-
ciency with good well-balanced frequency responses.

1. INTRODUCTION

The Discrete Wavelet Transform (DWT) in its maxi-
mally decimated form (Mallat's dyadic �lter tree [1])
has established an impressive reputation as a tool for
signal compression, but its use for other signal analy-
sis and reconstruction tasks has been hampered by two
main disadvantages:

� Lack of shift invariance, which means that small
shifts in the input signal can cause major varia-
tions in the distribution of energy between DWT
coe�cients at di�erent scales.

� Poor directional selectivity for diagonal features,
because the wavelet �lters are separable and real.

A well-known way of providing shift invariance is to
use the undecimated form of the dyadic �lter tree, but
this su�ers from increased computation requirements
and high redundancy in the output information, mak-
ing subsequent processing expensive too.

In [4, 5], we introduced the Dual-Tree Complex
Wavelet Transform (DT CWT) with the following
properties:

� Approximate shift invariance;

� Good directional selectivity in 2-dimensions
(2-D) with Gabor-like �lters (also true for higher
dimensionality, m-D);

� Perfect reconstruction (PR) using short
linear-phase �lters;

� Limited redundancy, independent of the num-
ber of scales, 2 : 1 for 1-D (2m : 1 for m-D);

� E�cient order-N computation { only twice
the simple DWT for 1-D (2m times for m-D).

2. THE DUAL FILTER TREE

Our work with complex wavelets for motion estimation
[2] showed that complex wavelets could provide approx-
imate shift invariance. Unfortunately we were unable
to obtain PR and good frequency characteristics using
short support complex FIR �lters in a single tree (eg.
�g. 1 Tree a).

However we can achieve approximate shift invari-
ance with a real DWT by doubling the sampling rate
at each level of the tree. For this to work, the sam-
ples must be evenly spaced. We can double all the
sampling rates in Tree a of �g. 1 by eliminating the
down-sampling by 2 after the level 1 �lters, H0a and
H1a. This is equivalent to two parallel fully-decimated
trees, a and b, provided that the delays of H0b and H1b

are one sample o�set from H0a and H1a. We then �nd
that, to get uniform intervals between samples from
the two trees below level 1, the �lters in one tree must
provide delays that are half a sample di�erent (at each
�lter input rate) from those in the other tree. For lin-
ear phase, this requires odd-length �lters in one tree
and even-length �lters in the other. Greater symmetry
between the two trees occurs if each tree uses odd and
even �lters alternately from level to level, but this is
not essential. In �g. 2 we show the positions of the
output samples when the �lters are odd and even as in
�g. 1. To invert the transform, we apply the PR �lters
G in the usual way to invert each tree separately and
�nally we average the two results.

In order to show the shift invariant properties of
the dual tree, we shall consider what happens when
we choose to retain the coe�cients of just one type
(wavelet or scaling function) from just one level of the
dual tree. For example we might choose to retain only
the level-3 wavelet coe�cients x001a and x001b from



x

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Tree a

Level 1

odd

- H1a
-��
��
#2 - x1a

- H0a
-��
��
#2

x0a

Level 2

even

- H01a
-��
��
#2 - x01a

- H00a
-��
��
#2

x00a

Level 3

odd

- H001a
-��
��
#2 -x001a

- H000a
-��
��
#2

x000a

Level 4

even

-H0001a
-��
��
#2 - x0001a

-H0000a
-��
��
#2 - x0000a

Tree b odd

- H1b
-��
��
#2 - x1b

- H0b
-��
��
#2

x0b

odd

- H01b
-��
��
#2 - x01b

- H00b
-��
��
#2

x00b

even

- H001b
-��
��
#2 -x001b

- H000b
-��
��
#2

x000b

odd

-H0001b
-��
��
#2 - x0001b

-H0000b
-��
��
#2 - x0000b

x:::

- H:::1
-
��
��
#2

- H:::0
-��
��
#2

-
��
��
"2 - G:::1

6

-��
��
"2 - G:::0

?

�

��
+ -

y:::
2-band reconstruction block

Figure 1: Dual tree of real �lters for the CWT, giving real and imaginary parts of complex coe�cients.

�g. 1, and set all others to zero. If the signal y, recon-
structed from just these coe�cients, is free of aliasing
then the transform is shift invariant at that level.

Input samples Block of 16 input samples� -

x: q q q q q q q q q q q q q q q q
Level 1 samples

odd Lo x0a: a a a a a a a a

odd Lo x0b: b b b b b b b b
odd Hi x1a: a a a a a a a a

odd Hi x1b: b b b b b b b b
Level 2 samples

even Lo x00a: a a a a

odd Lo x00b: b b b b
Hi x01a; x01b: � � � �

Level 3 samples

odd Lo x000a: a a

even Lo x000b: b b
Hi x001a; x001b: � �

Level 4 samples

even Lo x0000a: a

odd Lo x0000b: b
Hi x0001a; x0001b: �

Figure 2: E�ective sampling points of odd and even �lters
in �g. 1 assuming zero phase responses.

Fig. 3 shows the simpli�ed analysis and reconstruc-
tion parts of the dual tree when coe�cients of just one
type and level are retained. All down(up)-sampling
operations are moved to the output (input) of the
analysis (reconstruction) �lter banks and the cascaded
�lter transfer functions are combined. M = 2m is
the total downsampling factor. For example if we

retain only x001a and x001b, then M = 8, A(z) =
H0a(z)H00a(z2)H001a(z4) and B(z), C(z), D(z) are
obtained similarly.

3. SHIFT INVARIANT FILTER DESIGN

Letting W = ej2�=M , multi-rate analysis of �g. 3 gives:

Y (z) =
1

M

M�1X

k=0

X(W kz)[A(W kz)C(z)+B(W kz)D(z)]

(1)
For shift invariance, the aliasing terms (for which

k 6= 0) must be negligible. So we design B(W kz)D(z)
to cancel out A(W kz)C(z) for all non-zero k which
give overlap of the pass or transition bands of the �lters
C(z) orD(z) with those of the shifted �lters A(W kz) or
B(W kz). Separate strategies are needed depending on
whether the �lters are lowpass (for scaling functions)
or bandpass (for wavelets).

For level m in the dual tree, the lowpass �lters have
passbands �fs=2M ! fs=2M (fs is the input sampling
frequency). TheW k terms in (1) shift the passbands in
multiples of fs=M . If A(z) and C(z) have similar fre-
quency responses (as required for near-orthogonal �lter
sets) and signi�cant transition bands, it is not possible
to make A(Wz)C(z) small at all frequencies z = ej�,
whereas we can quite easily make A(W 2z)C(z) small
since the frequency shift is twice as great. Hence for
the lowpass case, we design B(W kz)D(z) to cancel
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Figure 3: Basic con�guration of the dual tree if either
wavelet or scaling-function coe�cients from just level m
are retained (M = 2m).

A(W kz)C(z) when k is odd by letting:

B(z) = z�M=2A(z) and D(z) = z�M=2C(z) (2)

so that B(W kz)D(z) = (�1)kA(W kz)C(z).
Now consider the bandpass case. Here we �nd that

the edges of the positive frequency passband of C or D,
fs=2M ! fs=M , will tend to overlap with the edges of
the negative frequency passband of A or B, that gets
shifted either to 0 ! fs=2M or to fs=M ! 3fs=2M
when k = 1 or 2 respectively. Similarly for the oppo-
site passbands when k = �1 or �2. Since the aliasing
terms are always caused by the overlap of opposing fre-
quency passbands, whereas the wanted terms (k = 0)
are produced by overlap of same-frequency passbands,
the solution here is to give B and D positive and nega-
tive passbands of opposite polarity while A and C have
passbands of the same polarity (or vice versa). Suppose
we have prototype complex �lters P (z) and Q(z), each
with just a single passband fs=2M ! fs=M and zero
gain at all negative frequencies, then we let:

A(z) = <[2P (z)] = P (z) + P �(z)

B(z) = =[2P (z)] = �j[P (z)� P �(z)]

C(z) = <[2Q(z)] = Q(z) +Q�(z)

D(z) = =[�2Q(z)] = j[Q(z) �Q�(z)] (3)

where conjugation is given by P �(z) =
P

r p
�
rz
�r and

produces negative frequency passbands. The overlap
terms are of the form Q(z)P �(W kz) for k = 1; 2 and
Q�(z)P (W kz) for k = �1;�2 which all cancel when
B(W kz)D(z) is added to A(W kz)C(z) in (1):

A(W kz)C(z) + B(W kz)D(z)

= 2P (W kz)Q(z) + 2P �(W kz)Q�(z) (4)

Hence we now need only design the �lters such that the
positive frequency complex �lter Q(z) does not overlap
with shifted versions of the similar �lter P (z), which is
quite easy since the �lter bandwidths are only fs=2M
while the shifts are in multiples of fs=M . For octave
band �lters in which the upper transition band is twice
as wide as the lower transition band, this implies that
the pass and transition bands should lie within the fre-
quency range fs=3M ! 4fs=3M . The formulations in

equations (3) show that the highpass �lter outputs from
trees a and b should be regarded as the real and imag-

inary parts of complex processes. We may also regard
the pairs of lowpass outputs in this way.

In practice, the �lters will not have zero gain in
their stop bands and the above relationships will be
approximate. So the transform will only be approxi-

mately shift invariant. However good performance is
possible with quite low complexity �lters.

For the lowpass �lters, equation (2) implies that the
tree b samples should interpolate midway between the
tree a samples, e�ectively doubling the sampling rate,
as shown in �g 2. This may achieved by two identical
lowpass �lters (either odd or even) at level 1, o�set
by 1 sample delay, and then by pairs of odd and even
length �lters at further levels to achieve the extra delay
di�erence ofM=4 samples, to make the total di�erence
M=2 at each level.

The responses of A and B also need to match,
which can only be achieved approximately beyond
level 1. We do this by designing H00a(z2) to give
minimum mean squared error in the approximation
z�2H0a(z)H00a(z2) � H0b(z)H00b(z2). Then H01a

can be designed to form a perfect reconstruction set
with H00a such that the reconstruction �lters G00a and
G00b also match each other closely.

Finally the symmetry of the odd-length highpass
�lters and the anti-symmetry of the even-length high-
pass �lters produce the required phase relationships be-
tween the positive and negative frequency passbands,
and equations (3) are approximately satis�ed too.

These �lters can then be used for all subsequent lev-
els of the transform. Good shift invariance (and wavelet
smoothness) requires that frequency response sidelobes
of the cascaded multirate �lters should be small. This is
achieved if each lowpass �lter has a stopband covering
1

3
to 2

3
of its sample rate, so as to reject the image fre-

quencies due to subsampling in the next lowpass stage.
If the highpass �lters then mirror this characteristic,
the conditions for no overlap of the shifted bandpass
responses in (4) are automatically satis�ed.

As an example, we selected two linear-phase PR
biorthogonal �lter sets which meet the above conditions
quite well and are also nearly orthogonal. For the odd-
length set, we designed (13,19)-tap �lters using the (1-
D) transformation of variables method [3], and then a
(12,16)-tap even-length set to match. Fig. 4 shows the
frequency responses of the reconstruction �lter bank;
and the analysis �lters are very similar. The analy-
sis coe�cients are listed in the following table (the re-
construction �lters are obtained by negating alternate
coe�cients and swapping bands).



-8 -6 -4 -2 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

FREQUENCY (SAMPLE FREQ / 16)

1234

4

Level

Figure 4: Frequency reponses of complex wavelets at levels
1 to 4 and of the level 4 scaling function.

odd H:::0 odd H:::1 even H:::0 even H:::1

13-tap 19-tap 12-tap 16-tap
-0.0000706

0 -0.0004645
-0.0017581 0.0013419 0.0013349

0 -0.0018834 -0.0058109 0.0022006
0.0222656 -0.0071568 0.0166977 -0.0130127
-0.0468750 0.0238560 -0.0000641 0.0015360
-0.0482422 0.0556431 -0.0834914 0.0869008
0.2968750 -0.0516881 0.0919537 0.0833552
0.5554688 -0.2997576 0.4807151 -0.4885957
0.2968750 0.5594308 0.4807151 0.4885957
-0.0482422 -0.2997576 0.0919537 -0.0833552

...
...

...
...

Fig. 5 demonstrates the shift invariance of the DT
CWT with these �lters. The input is a unit step,
shifted to 16 adjacent sampling instants in turn. Fig. 5a
shows the input steps and the components of the DT
CWT output, reconstructed from the wavelet coe�-
cients at each of levels 1 to 4 in turn and from the
scaling function coe�cients at level 4. Summing these
components reconstructs the input steps perfectly. For
comparison �g. 5b shows the equivalent components if
the real DWT is used. The CWT responses are clearly
much more consistent with shift (shift invariant). The
energies of the DT CWT coe�cients at each level vary
over the 16 shifts by no more than 1:025 : 1, whereas
the DWT coe�cient energies vary by up to 5:45 : 1 !

4. EXTENSION TO M -DIMENSIONS

Extension to 2-D is achieved by separable �ltering
along columns and then rows. However, if column
and row �lters both suppress negative frequencies, then
only the �rst quadrant of the 2-D signal spectrum is
retained. Two adjacent quadrants of the spectrum are
required to represent fully a real 2-D signal, so we also
�lter with complex conjugates of the row �lters. This
gives 4 : 1 redundancy in the transformed 2-D signal.

(a) Dual Tree CWT (b) Real DWT

Input

Wavelets

Level 1

Level 2

Level 3

Level 4

Scaling fn

Level 4

Figure 5: Wavelet and scaling function components at lev-
els 1 to 4 of 16 shifted step responses of the DT CWT (a)
and real DWT (b).

If the signal exists in more than 2-D, then further con-
jugate pairs of �lters are needed for each dimension
leading to redundancy of 2m : 1.

Complex �lters in multiple dimensions provide true
directional selectivity, despite being implemented sepa-
rably, because they are still able to separate all parts of
them-D frequency space. For example a 2-DCWT pro-
duces six bandpass subimages of complex coe�cients
at each level, which are strongly oriented at angles of
�15�;�45�;�75�. We believe this is an important fea-
ture for many applications, including motion estima-
tion and compensation, texture synthesis, image de-
noising, edge enhancement, segmentation, and image
classi�cation. Some of these are discussed in [4, 5].
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