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ABSTRACT

We discuss the shift invariant properties of a new
implementation of the Discrete Wavelet Transform,
which employs a dual tree of wavelet filters to obtain
the real and imaginary parts of complexr wavelet co-
efficients. This introduces limited redundancy (2™:1
for m-dimensional signals) and allows the transform to
provide approximate shift invariance and directionally
selective filters (properties lacking in the traditional
wavelet transform) while preserving the usual proper-
ties of perfect reconstruction and computational effi-
ciency with good well-balanced frequency responses.

1. INTRODUCTION

The Discrete Wavelet Transform (DWT) in its maxi-
mally decimated form (Mallat’s dyadic filter tree [1])
has established an impressive reputation as a tool for
signal compression, but its use for other signal analy-
sis and reconstruction tasks has been hampered by two
main disadvantages:

e Lack of shift invariance, which means that small
shifts in the input signal can cause major varia-
tions in the distribution of energy between DW'T
coefficients at different scales.

e Poor directional selectivity for diagonal features,
because the wavelet filters are separable and real.

A well-known way of providing shift invariance is to
use the undecimated form of the dyadic filter tree, but
this suffers from increased computation requirements
and high redundancy in the output information, mak-
ing subsequent processing expensive too.

In [4, 5], we introduced the Dual-Tree Complex
Wavelet Transform (DT CWT) with the following
properties:

e Approximate shift invariance;

e Good directional selectivity in 2-dimensions
(2-D) with Gabor-like filters (also true for higher
dimensionality, m-D);

e Perfect reconstruction (PR) using short
linear-phase filters;

e Limited redundancy, independent of the num-
ber of scales, 2 : 1 for 1-D (2™ : 1 for m-D);

e Efficient order-N computation — only twice
the simple DWT for 1-D (2™ times for m-D).

2. THE DUAL FILTER TREE

Our work with complex wavelets for motion estimation
[2] showed that complex wavelets could provide approx-
imate shift invariance. Unfortunately we were unable
to obtain PR and good frequency characteristics using
short support complex FIR filters in a single tree (eg.
fig. 1 Tree a).

However we can achieve approximate shift invari-
ance with a real DWT by doubling the sampling rate
at each level of the tree. For this to work, the sam-
ples must be evenly spaced. We can double all the
sampling rates in Tree a of fig. 1 by eliminating the
down-sampling by 2 after the level 1 filters, Hy, and
Hy4. This is equivalent to two parallel fully-decimated
trees, a and b, provided that the delays of Hoy and Hyy
are one sample offset from Hy, and Hy,. We then find
that, to get uniform intervals between samples from
the two trees below level 1, the filters in one tree must
provide delays that are half a sample different (at each
filter input rate) from those in the other tree. For lin-
ear phase, this requires odd-length filters in one tree
and even-length filters in the other. Greater symmetry
between the two trees occurs if each tree uses odd and
even filters alternately from level to level, but this is
not essential. In fig. 2 we show the positions of the
output samples when the filters are odd and even as in
fig. 1. To invert the transform, we apply the PR filters
G in the usual way to invert each tree separately and
finally we average the two results.

In order to show the shift invariant properties of
the dual tree, we shall consider what happens when
we choose to retain the coefficients of just one type
(wavelet or scaling function) from just one level of the
dual tree. For example we might choose to retain only
the level-3 wavelet coefficients xgg14 and xgg1p from
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Figure 1: Dual tree of real filters for the CW'T, giving real and imaginary parts of complex coefficients.

fig. 1, and set all others to zero. If the signal y, recon-
structed from just these coefficients, 1s free of aliasing
then the transform is shift invariant at that level.
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Figure 2: Effective sampling points of odd and even filters
in fig. 1 assuming zero phase responses.

Fig. 3 shows the simplified analysis and reconstruc-
tion parts of the dual tree when coefficients of just one
type and level are retained. All down(up)-sampling
operations are moved to the output (input) of the
analysis (reconstruction) filter banks and the cascaded
filter transfer functions are combined. M = 2™ is
the total downsampling factor. For example if we

retain only o1, and o1, then M = 8, A(z) =
Hoo(2) Hooa(2?) Hoo1a(2*) and B(z), C(z), D(z) are

obtained similarly.

3. SHIFT INVARIANT FILTER DESIGN
Letting W = /27/M multi-rate analysis of fig. 3 gives:

MOESY: > X(WF)AWH2) C(2)+B(W*2) D(2)]
(1)

For shift invariance, the aliasing terms (for which
k # 0) must be negligible. So we design B(W*z) D(z)
to cancel out A(W*z)(C(z) for all non-zero k which
give overlap of the pass or transition bands of the filters
C(z) or D(z) with those of the shifted filters A(W*2) or
B(W*2). Separate strategies are needed depending on
whether the filters are lowpass (for scaling functions)
or bandpass (for wavelets).

For level m in the dual tree, the lowpass filters have
passbands — f; /2M — f;/2M (f; is the input sampling
frequency). The W* terms in (1) shift the passbands in
multiples of f;/M. If A(z) and C(z) have similar fre-
quency responses (as required for near-orthogonal filter
sets) and significant transition bands, it is not possible
to make A(Wz)C(z) small at all frequencies z = e/,
whereas we can quite easily make A(W?z) C(z) small
since the frequency shift is twice as great. Hence for
the lowpass case, we design B(W*2) D(z) to cancel
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Figure 3: Basic configuration of the dual tree if either
wavelet or scaling-function coefficients from just level m
are retained (M = 2™).

A(W*2)C(z) when k is odd by letting:

B(z) = 222 A(z) and D(z) = :¥M/2C(2)  (2)
so that B(W*2) D(z) = (=1)* A(W*2) C(2).

Now consider the bandpass case. Here we find that
the edges of the positive frequency passband of C' or D,
Is/2M — f/M, will tend to overlap with the edges of
the negative frequency passband of A or B, that gets
shifted either to 0 — f;/2M or to fi/M — 3f;/2M
when & = 1 or 2 respectively. Similarly for the oppo-
site passbands when & = —1 or —2. Since the aliasing
terms are always caused by the overlap of opposing fre-
quency passbands, whereas the wanted terms (k = 0)
are produced by overlap of same-frequency passbands,
the solution here is to give B and D positive and nega-
tive passbands of opposite polarity while A and C' have
passbands of the same polarity (or vice versa). Suppose
we have prototype complez filters P(z) and Q(z), each
with just a single passband f;/2M — f;/M and zero
gain at all negative frequencies, then we let:

Az) = RRP()] = P()+ P (2)
B(z) = SRP()] = —jlP(x) - P*(2)]
Cz) = R2QE) = Q) +Q(2)

D) = 9[-2Q()] = JIQ) - @ ()] ()

where conjugation is given by P*(z) = >, piz~" and
produces negative frequency passbands. The overlap
terms are of the form Q(z) P*(W*z) for k = 1,2 and
Q*(z) P(W*2) for k = —1,—2 which all cancel when
B(W*2) D(z) is added to A(W*z)C(z) in (1):
AW ) C(2) + BOW*2) D(2)
= 2P(W*2) Q(2) + 2P*(W"2) Q*(2)  (4)

Hence we now need only design the filters such that the
positive frequency complex filter Q(z) does not overlap
with shifted versions of the similar filter P(z), which is
quite easy since the filter bandwidths are only f,/2M
while the shifts are in multiples of f;/M. For octave
band filters in which the upper transition band is twice
as wide as the lower transition band, this implies that
the pass and transition bands should lie within the fre-
quency range fs/3M — 4f;/3M. The formulations in

equations (3) show that the highpass filter outputs from
trees @ and b should be regarded as the real and imag-
wmary parts of complex processes. We may also regard
the pairs of lowpass outputs in this way.

In practice, the filters will not have zero gain in
their stop bands and the above relationships will be
approximate. So the transform will only be approzi-
mately shift invariant. However good performance is
possible with quite low complexity filters.

For the lowpass filters, equation (2) implies that the
tree b samples should interpolate midway between the
tree a samples, effectively doubling the sampling rate,
as shown in fig 2. This may achieved by two identical
lowpass filters (either odd or even) at level 1, offset
by 1 sample delay, and then by pairs of odd and even
length filters at further levels to achieve the extra delay
difference of M /4 samples, to make the total difference
M/2 at each level.

The responses of A and B also need to match,
which can only be achieved approximately beyond
level 1. We do this by designing Hona(2?) to give
minimum mean squared error in the approximation
ZizHoa(Z)Hooa(Zz) ~ HOb(Z)HOOb(Zz). Then HOla
can be designed to form a perfect reconstruction set
with Hgg, such that the reconstruction filters Ggp, and
Gloop also match each other closely.

Finally the symmetry of the odd-length highpass
filters and the anti-symmetry of the even-length high-
pass filters produce the required phase relationships be-
tween the positive and negative frequency passbands,
and equations (3) are approximately satisfied too.

These filters can then be used for all subsequent lev-
els of the transform. Good shift invariance (and wavelet
smoothness) requires that frequency response sidelobes
of the cascaded multirate filters should be small. This is
achieved if each lowpass filter has a stopband covering
% to % of its sample rate, so as to reject the image fre-
quencies due to subsampling in the next lowpass stage.
If the highpass filters then mirror this characteristic,
the conditions for no overlap of the shifted bandpass
responses in (4) are automatically satisfied.

As an example, we selected two linear-phase PR
biorthogonal filter sets which meet the above conditions
quite well and are also nearly orthogonal. For the odd-
length set, we designed (13,19)-tap filters using the (1-
D) transformation of variables method [3], and then a
(12,16)-tap even-length set to match. Fig. 4 shows the
frequency responses of the reconstruction filter bank;
and the analysis filters are very similar. The analy-
sis coefficients are listed in the following table (the re-
construction filters are obtained by negating alternate
coefficients and swapping bands).
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Figure 4: Frequency reponses of complex wavelets at levels
1 to 4 and of the level 4 scaling function.

odd H o odd H 1 even H o even H 1
13-tap 19-tap 12-tap 16-tap
-0.0000706

0 -0.0004645

-0.0017581 | 0.0013419 0.0013349
0 -0.0018834 | -0.0058109 | 0.0022006
0.0222656 | -0.0071568 | 0.0166977 | -0.0130127
-0.0468750 | 0.0238560 | -0.0000641 | 0.0015360
-0.0482422 | 0.0556431 | -0.0834914 | 0.0869008
0.2968750 | -0.0516881 | 0.0919537 0.0833552
0.5554688 | -0.2997576 | 0.4807151 | -0.4885957
0.2968750 0.5594308 0.4807151 0.4885957
-0.0482422 | -0.2997576 | 0.0919537 | -0.0833552

Fig. 5 demonstrates the shift invariance of the DT
CWT with these filters. The input is a unit step,
shifted to 16 adjacent sampling instants in turn. Fig. 5a
shows the input steps and the components of the DT
CWT output, reconstructed from the wavelet coeffi-
cients at each of levels 1 to 4 in turn and from the
scaling function coefficients at level 4. Summing these
components reconstructs the input steps perfectly. For
comparison fig. bb shows the equivalent components if
the real DW'T is used. The CWT responses are clearly
much more consistent with shift (shift invariant). The
energies of the DT CWT coefficients at each level vary
over the 16 shifts by no more than 1.025 : 1, whereas
the DWT coefficient energies vary by up to 5.45: 1!

4. EXTENSION TO M-DIMENSIONS

Extension to 2-D is achieved by separable filtering
along columns and then rows. However, if column
and row filters both suppress negative frequencies, then
only the first quadrant of the 2-D signal spectrum is
retained. Two adjacent quadrants of the spectrum are
required to represent fully a real 2-D signal, so we also
filter with complex conjugates of the row filters. This
gives 4 : 1 redundancy in the transformed 2-D signal.
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Figure 5: Wavelet and scaling function components at lev-
els 1 to 4 of 16 shifted step responses of the DT CWT (a)
and real DWT (b).

If the signal exists in more than 2-D, then further con-
jugate pairs of filters are needed for each dimension
leading to redundancy of 2 : 1.

Complex filters in multiple dimensions provide true
directional selectivity, despite being implemented sepa-
rably, because they are still able to separate all parts of
the m-D frequency space. For examplea 2-D CWT pro-
duces six bandpass subimages of complex coefficients
at each level, which are strongly oriented at angles of
+15°, +£45°, +£75°. We believe this is an important fea-
ture for many applications, including motion estima-
tion and compensation, texture synthesis, image de-
noising, edge enhancement, segmentation, and image
classification. Some of these are discussed in [4, 5].
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