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ABSTRACT

We present a fast multiple exchange algorithm that de-
signs FIR �lters with magnitude and phase speci�ca-
tions subject to constraints on the error function. We
use a constrained least squares criterion which mini-
mizes error energy and imposes bounds on the mag-
nitude of the error. We can trade error energy ver-
sus peak error, and complex least squares and complex
Chebyshev �lters result as special cases. We provide a
Matlab program implementing the proposed algorithm.
This program has proved to be e�cient and reliable.

1. INTRODUCTION

Conventionally, the frequency domain design of �lters
is accomplished by minimizing an appropriate measure
of the approximation error. Error measures that are
frequently used are error energy and maximum errors.
Filters minimizing these error measures are optimum
in the least squares and in the Chebyshev sense, re-
spectively. However, it has turned out that uncon-
strained minimization of some error measure is often
not the most appropriate formulation of a �lter de-
sign problem. It is often desired to impose bounds on
certain error functions, or to mix di�erent error cri-
teria. A standard design speci�cation is a tolerance
scheme for some frequency domain function. A toler-
ance scheme is the actual motivation for all algorithms
based on Chebyshev approximation. However, uncon-
strained Chebyshev approximation does not solve this
problem, because the maximum approximation error is
a result of the design process and cannot be prescribed.
Prescribing a tolerance scheme is only possible if some
type of constrained optimization is used. Constraints
are not only useful for specifying tolerance schemes, but
they also allow the mix of di�erent error criteria. The
constrained least squared error criterion mixes Cheby-
shev and least squares criteria. It has turned out that
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�lters mixing both criteria in an appropriate way can
have more desirable properties than �lters that are op-
timum with respect to only one of these criteria.

An important special case of constrained least
squares designs are �lters that have Chebyshev pass-
bands and least squares stopbands. These �lters si-
multaneously minimize the distortion of desired signals
in the passbands and the power of broadband noise in
the stopbands. An early paper on the design of dig-
ital FIR �lters of this type is [1]. More research on
the constrained least squares design of FIR �lters has
been published in [2, 3, 4] where the design of linear
phase FIR �lters is considered. The more complicated
case of arbitrary magnitude and phase or group delay
responses has been considered in [5, 6, 7, 8]. However,
for the complex approximation case, no reliable pro-
grams have become available so far.

2. PROBLEM

De�ne the complex error function

E(!;h) = H(ej!;h)�D(ej!); (1)

where H(ej!;h) is the actual frequency response

H(ej!;h) =
N�1X
n=0

h(n)e�jn!

of a length N FIR �lter with coe�cients h =
[h(0); h(1); : : :; h(N � 1)]T . The complex function
D(ej!) is the desired frequency response containing the
desired magnitude and phase responses. We de�ne a
complex weighted least squares �lter design problem by

minimize
h

Z



W (!)jE(!;h)j2d!; (2)

with a non-negative weighting function W (!). The set

 contains all frequency intervals on which an approx-
imation is desired. Adding constraints to problem (2)



results in a complex constrained least squares �lter de-
sign problem. In [9], we motivate that it is most useful
to impose constraints on magnitude and phase errors.
We believe that the group delay error is not an im-
portant quantity and can be ignored if we consider the
phase error instead. The magnitude and phase errors
can be constrained independently of each other (see
[7, 9]), or they can be constrained by constraining the
magnitude of the complex error function (1). If

jE(!;h)j � �(!); ! 2 
B; (3)

is satis�ed for some strictly positive constraint function
�(!), then the magnitude and phase error functions
Em(!;h) =

��H(ej!;h)
�� � ��D(ej!)

�� and E�(!;h) =

arg
�
H(ej!;h)

	
� arg

�
D(ej!)

	
satisfy

Em(!;h) � �(!); ! 2 
B;

E�(!;h) � arcsin

�
�(!)

jD(ej!)j

�
; ! 2 
B :

Hence, bounding the magnitude of the complex error
function also bounds magnitude and phase errors. The
set 
B is the union of all frequency intervals where
error bounds are desired.

The problem we consider here is the weighted least
squares problem (2) with the additional constraint (3).
This problem is a convex quadratic programming prob-
lem. If a solution exists, it is unique.

3. ALGORITHM

The optimum solution to the constrained least squares
problem (2,3) will satisfy the inequality constraint (3)
with equality only at a �nite number of frequency
points. It is su�cient to impose the constraint (3) only
at these frequency points in order to compute the opti-
mum solution to the constrained least squares problem.
However, this set of frequency points is not known in
advance. The proposed design algorithm identi�es a
set of constraints that contains the relevant frequency
points by solving a sequence of quadratic program-
ming problems. Each of these problems contains only
a relatively small number of constraints. In each it-
eration step, a new set of constraints is formulated
by exchanging several old constraints for several new
constraints. The total number of constraints generally
changes from one iteration step to the next. Such algo-
rithm are called implicit multiple exchange algorithms.
Implicit multiple exchange algorithm for solving the
complex Chebyshev approximation problem have been
published in [10, 11]. The algorithm given in [11] can
also be used to solve constrained least squares problems
if they are convex. However, its computational e�ort is
very high compared to the algorithm presented in this
paper. The proposed multiple exchange algorithm can
be stated as follows:

0. k := 0. Solve the unconstrained quadratic mini-
mization problem (2) for h(0).

1. Determine the local maxima of jE(!;h(k))j �

�(!); ! 2 
B. If jE(!;h(k))j � �(!); ! 2 
B,
is satis�ed up to some speci�ed tolerance, stop.
Otherwise, go to 2.

2. Determine the set 
viol of local maximizers of
jE(!;h(k))j � �(!) that satisfy jE(!;h(k))j >

�(!).
3. Formulate a new set of constraints by using

the current active constraints and the new con-
straints

Re
h
E(!;h)e�j argfE(!;h

(k))g
i
� �(!); ! 2 
viol:

4. k := k+1. Computeh(k) by solving the quadratic
programming problem given by (2) and the con-
straints determined in step 3. Go to 1.

The vector h(k) denotes the solution of the subproblem
in iteration step k. In step 3, the current active con-

straints denote the constraints of the current subprob-
lem that are satis�ed with equality. In the �rst itera-
tion step (k = 0), there are of course no current active
constraints, and the set of new constraints formulated
in step 3 only consists of the constraints determined
by the set 
viol. For solving the quadratic program-
ming subproblems in step 4, it is advantageous to use
the dual formulation (see e. g. [12]). A more detailed
discussion of the algorithm is given in [9].

4. EXAMPLE

We design a chirp-lowpass �lter according to the fol-
lowing speci�cation:

D(ej!) =

�
ej�d(!); 0 � ! � !p
0; !s � ! � �

; (4)

with the desired phase response �d(!) given by

�d(!) = �
N � 1

2
!�8�

�
!

!p
�

1

2

�2

; 0 � ! � !p; (5)

where N is the �lter length, and !p and !s are the
passband and stopband edges, respectively. The de-
sired phase response �d(!) corresponds to a linearly
ascending desired group delay response. We choose
!p = 0:2�, !s = 0:225�, and N = 201. We choose
the constraint function �(!) according to

�(!) =

�
7 � 10�3; 0 � ! � !p
10�45=20; !s � ! � �

;

which corresponds to a maximum passband error of
0.007 and a minimum stopband attenuation of 45 dB.
The weighting functionW (!) in (2) is chosen to be 1 in
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Figure 1: Constrained least squares design of chirp-
lowpass �lter (length N = 201). Dashed lines: con-
straints.

the passband and 500 in the stopband. Consequently,
error energy is minimized mainly in the stopband. For
designing the optimum �lter, we use the Matlab pro-
gram exch ce given in section 5. The �lter speci�cation
is generated by the following commands:

N=201; omp=.2*pi;

om=pi*[linspace(0,.2,800),linspace(.225,1,2800)];

Pd=-(N-1)/2*om-8*pi*(om/omp-.5).^2;
D=[exp(j*Pd(1:800)),zeros(1,2800)];

W=[ones(1,800),500*ones(1,2800)];

dc=[.007*ones(1,800),10^(-2.25)*ones(1,2800)];

The �lter is designed by the command

h = exch_ce(N,om,D,W,dc);

Fig. 1 shows the magnitude of the designed frequency
response, the details of the passband magnitude behav-
ior, the deviation of the passband phase response from
the desired phase response (5), and the passband group
delay response. Dashed lines indicate the constraints
imposed by the function �(!).

5. MATLAB PROGRAM

The following Matlab program implements the pro-
posed multiple exchange algorithm. It works with a
grid of frequencies such that the integral in (2) is re-
placed by a sum. The constraint (3) is also formulated
on this frequency grid. Choosing 10� 20N grid points
results in a good approximation to the continuous de-
sign problem. Note that the algorithm given in section
3 also works for continuous frequency intervals. In this
case, the determination of local maxima in step 1 must
be done on a continuum. This can be achieved by using
Newton's method for re�ning local maximadetermined
on a grid [3]. The program has been written for Matlab
5.1.

function h = exch_ce(N,om,D,W,dc)
% EXCH_CE: constrained least squares FIR

% filter design in the complex domain

% h = exch_ce(N,om,D,W,dc)

%

% h (real-valued) filter impulse response

% N filter length
% om frequency grid (0 <= om <= pi)

% D complex desired frequency response on the

% grid om

% W positive weighting function on the

% grid om

% dc positive constraint function on the
% grid om;

% for intervals without constraints specify

% negative dc

%

% EXAMPLE: low-delay bandpass filter with passband

% and stopband constraints
% om=pi*[linspace(0,.34,750),...

% linspace(.4,.6,500),linspace(.66,1,750)];

% D=[zeros(1,750),exp(-j*30*om(751:1250)),...

% zeros(1,750)];

% W=[500*ones(1,750),ones(1,500),500*ones(1,750)];

% dc=[.001*ones(1,750),.01*ones(1,500),...
% .001*ones(1,750)];

% h = exch_ce(100,om,D,W,dc);

%

% Author: Mathias C. Lang

% Vienna University of Technology, Aug. 98

om=om(:);D=D(:);W=W(:);dc=dc(:);Lom=length(om);
tol = 1e-3; se = sqrt(eps);

% ---- set up objective function -----------------

t=zeros(N,1); c=t;

for i = 1:N,

t(i) = W.'*cos((i-1)*om);

c(i) = W.'*(real(D).*cos((i-1)*om) - ...
imag(D).*sin((i-1)*om));

end

t=t/Lom; c=c/Lom;

% ---- solve unconstrained L2 problem ------------

[L,d] = invtoep(t);

for i=1:N, L(i:N,i)=L(i:N,i)*sqrt(d(i));end
%L = inv(chol(toeplitz(t)));

h = L*(L'*c); h_uc = h;

% ---- prepare for iteration ---------------------

Aact=[]; bact=[]; allconstr = 1;

IB = find(dc>=0); if ~length(IB), return; end

if length(IB) < length(dc), allconstr = 0; end
Dm = abs(D(IB)); Dp = angle(D(IB));

dc = dc(IB); om = om(IB); evec = exp(-j*om);

% ---- iterate -----------------------------------

while 1,

% ---- compute error maxima -------------------

E = polyval(h(N:-1:1),evec) - D(IB);
Em = abs(E); Ep = angle(E);

Em_dc = Em-dc; Imax = locmax(Em_dc);

% ---- find violating maxima ------------------

Iviol=find(Em_dc(Imax)>0); Iviol=Imax(Iviol);

if length(Iviol)==length(Imax)&allconstr,



disp(' There is no feasible solution.');
disp(' Relax the constraints.'); break;

end

% ---- check stopping criterion ---------------

if all(Em_dc(Iviol)<=max(dc(Iviol)*tol,se)),

break;

end
% ---- formulate new constraints --------------

omviol = om(Iviol); Epviol = Ep(Iviol);

Dmviol = Dm(Iviol); Dpviol = Dp(Iviol);

Anew = cos(omviol*(0:N-1)+Epviol(:,ones(N,1)));

bnew = Dmviol.*cos(Dpviol-Epviol) + dc(Iviol);

% ---- make a plot ----------------------------
plot(om/pi,Em_dc,omviol/pi,Em_dc(Iviol),'rx');

title('constraint violation');

xlabel('\omega/\pi'); grid, drawnow

% ---- solve subproblem (dual form) -----------

A=[Aact;Anew]; b=[bact;bnew]; nb=length(b);

AL = A*L; H = AL*AL'; f = b-A*h_uc;
for i=1:nb, H(i,i) = H(i,i)+se; end

l = nnqmin(H,f);

%l = qp(H,f,[],[],zeros(nb,1));

h = h_uc-L*(AL'*l);

% ---- find active constraints ----------------

act = find(l>se);Aact = A(act,:);bact = b(act);
end

The program exch ce calls the program locmax that
computes the indices of the local maxima of a data
vector:

function I = locmax(x)

% LOCMAX: I = locmax(x)
% finds indices of local maxima of data x

x = x(:); n = length(x);

if n, I = find(x > [x(1)-1;x(1:n-1)] & ...

x > [x(2:n);x(n)-1]);

else, I = []; end

The program invtoep called by exch ce computes the
Cholesky factorization of the inverse of a Hermitian
Toeplitz matrix in an e�cient way. This program can
be obtained from the author. It can, however, be re-
placed by a less e�cient standard Matlab command as
indicated in the program exch ce. The duals of the
quadratic programming subproblems are solved by the
program nnqmin. This program can also be obtained
from the author. Alternatively, the subproblems can be
solved by the program qp contained in the Matlab Op-
timization Toolbox. However, the computation times
become considerably larger. Using nnqmin, the design
presented in section 4 takes 20 seconds on a 166 MHz
Pentium PC. If qp is used instead, the design takes 150
seconds.

6. CONCLUSION

We have considered the constrained least squares �l-
ter design problem for the case that there are speci�-
cations on magnitude and phase responses. We have

presented a fast implicit multiple exchange algorithm
that solves this problem. An arbitrary constraint func-
tion bounding the magnitude of the approximation er-
ror can be speci�ed. The �lters that can be designed
by the proposed algorithm are mixes between complex
least squares and complex Chebyshev �lters. Arbitrary
trade-o�s between these two standard criteria are pos-
sible. We have provided an e�cient Matlab implemen-
tation of the proposed algorithm.
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