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In the paper impact of the most critical part of the up-to-date
computer memory hierarchy, the cache, on the efficiency of fast
transform algorithms (e.g. FFT, DCT/DST, DWHT, including
multidimensional generalizations) is analyzed. Cache misses can
severely deteriorate efficiency of a computer program, and
indeed, it is shown that for large data vectors a modification of a
fast transform algorithm realization may change their number
dramatically. Several memory managing problems are pointed
out, and suggestions for their amelioration are given. Formulae
on the minimum of data-related cache misses numbers for radix-
2s transform realizations are given, V is an integer.
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The most exact measure of algorithm performance on a computer
is execution time of a program that is its realization. This
measure is however not very practical for general comparison of
algorithms, as it is difficult to asses what features decide that one
program is faster than the other: algorithm dependent or
algorithm independent. That is why algorithms are compared on
the basis of numbers of instructions that are critical for an
appropriate computer model. For sequential computers the
commonly accepted model is the 5$0�PDFKLQH with DULWKPHWLFDO
operations to be counted [1]. The model was adequate in fiftieth,
then its appropriateness diminished as advanced computer
features like multiple internal processor registers, pipelining, and
caches become more and more popular. Today the features are
ubiquitous [2], hence the RAM machine model should be used
rather cautiously.

As in some digital signal processing applications fast transform
algorithms are processing huge data structures, their computation
can be severely affected by memory organization, in particular by
caches. This is the main topic of the paper being covered in
section 4, the section contains also some hints how to minimize
the negative effects, as well as formulae on the minimal numbers
of cache misses. An overview of memory organization, and cache
types in particular is given in section 2. Many of the fast
transform algorithms are built up of radix-. ‘butterflies’ (usually
radix-2 ones, e.g. one- and multidimensional FFT, DWHT, DCT,
DHT...), section 3. It should be noted that radix-. transforms
consists of many independently computed modules, and they can
be very efficiently realized on processors with pipelining of
virtually any depth, hence, pipelining effects need not be
considered in the corrected RAM machine model for them.
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One of aims of computer technology is to give the user an
impression that a computer has unlimited memory all words of
which are equally easy accessible. This principle has been
reflected in the 5$0�PDFKLQH�model [1], which states that from
the computational point of view a computer consists of a
sequential processor with no more than one internal register and
the random-access memory. Because of technological efforts
done for supporting the illusion, for problems that do not require
excessive amounts of memory the RAM machine model is still a
fairly good approximation of even the most sophisticated up-to-
date sequential computers.

Nevertheless, if the compared algorithms have similar
performance, the RAM machine model could fail. This happened
when linear code FFT and WFTA programs were compared on
computers having several floating-point accumulators [3], [4].
Internal processor registers introduce memory hierarchy, we have
large and slow main memory, and fast but small memory inside a
processor. There is also a change in philosophy of writing
optimal computer programs. Instead of steady flow of memory-
to-memory, or memory-to-accumulator instructions the program
brakes down into phases of register-to-register computations
separated by phases of memory-to-register operations being
necessary for updating the register contents (in competition
winning RISC architectures the only memory-to-register
operations are loads and stores [2]). The conclusion of [3], [4]
has been that for multi-register processors the traditional
arithmetical complexity algorithm measure should be extended
by the count of main memory addressing operations (loads and
stores in the case of RISC computers).

Since that times a new level of memory hierarchy has become
popular, the FDFKH [2]. The cache is a buffer memory between
processor registers and main computer memory. Its main purpose
is to reduce the time of main memory loads and stores, as read
and write times of today processors are many times shorter than
those for dynamic RAM (DRAM) chips. Caches are faster, but
smaller (more expensive) than main memories, but not to the
extent the internal processor registers are, they form an
intermediary memory hierarchy level (or levels [2]) between
them. Caches are invisible for a programmer, they store copies of
memory words that are likely to be used by a program, or loaded
as program instructions.

The simplest cache control is based on GLUHFW� PDSSLQJ� of
memory addressing space into cache addressing space. When a



datum is required by a processor for the first time, apart from
loading it to the processor register it is also stored in the cache at
the address obtained by computing the residue of datum memory
address modulo the size of the cache:

&DFKHBDGGUHVV� �PHPRU\BDGGUHVV�modulo�FDFKHBVL]H

In fact, the address computation can be somewhat more
complicated, as in some caches data are stored in blocks. Next
read or write of the datum will take place between processor and
cache, hence, it will be much faster. Notice also that if data or
program form a contiguous cluster in memory, then new
data/instruction load does not erase old ones (no FRQIOLFW), unless
the cluster is greater than the cache. The cache concept works as
typical programs and associated with them data indeed exhibit
WHPSRUDO� and VSDWLDO ORFDOLW\ [2], i.e. data and instruction
locations are reused several times, and form concentrated clusters
in memory.

When the spatial locality of a program is poor and highly
structured, the probability of data/instruction conflict is quite
high as the address mapping formula above is too rigid. The
remedy is to use the DVVRFLDWLYH� cache, for which any main
memory location can be placed anywhere in the cache. Such
caches require, however, quite big circuitry for searching
requested data in the cache, hence they are usually small. The
compromise solution is to use the P�ZD\�DVVRFLDWLYH cache, P�is
small. This is the variant of direct-mapped cache composed of
associative caches of size P, the address mapping formula is:

&DFKHBDGGUHVV� �PHPRU\BDGGUHVV�modulo��FDFKHBVL]H���P�

When a new block stored in the cache has the same cache
address as an old one, then usually no conflict occurs, as there is
a place for P�blocks having the same cache address.

If searched data is in the cache, then we have a FDFKH�KLW, in the
opposite case a FDFKH�PLVV�take place. In the fastest computers a
cache miss may result in program delays lasting even several
hundreds of clock cycles [2], i.e. significantly more than the
execution time of a floating-point arithmetical operation.
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In this paper the name UDGL[�.� WUDQVIRUPV is given to fast
transform algorithms that are built up from .-point operations
called EXWWHUIOLHV:

[�Q������������������←����I�>[�Q���[�Q�RIIVHW����«��[�Q�RIIVHW.���@�
[�Q�RIIVHW������←����I�>[�Q���[�Q�RIIVHW����«��[�Q�RIIVHW.���@�

«««««
[�Q�RIIVHW.�����←����I.��>[�Q���[�Q�RIIVHW����«��[�Q�RIIVHW.���@���(1)

where IL>�@�� RIIVHWL�depends on the transform type, L ����«�.��.
We are interested only in data addressing schemes of the
transforms, including addressing of constants involved in
computation of functions IL>�@�� We can distinguish two basic
types of addressing schemes, the FFT-like one, and the DCT-like
one. In the first type the offsets are given by a highly regular
relation RIIVHWL L�0�.��where� �0� is the number of data samples
processed in a given transform substructure, Q ��������0������For
example, the simplest radix-2 butterfly that exists defines the fast
DWHT algorithm, and is given by the following relation:

[�Q�������������←���[�Q����[�Q�0����
[�Q�0������←���[�Q�����[�Q�0���� � ����(2)

In the second addressing scheme the processed data samples are
located symmetrically with respect to the data vector center. For
example, the unnamed DCT-like counterpart of DWHT
algorithm (2) is defined as follows:

[�Q��������������←���[�Q����[�0�����Q��
[�0�����Q����←���[�Q�����[�0�����Q�� ����(3)

Without loss of generality we can assume that an 1-point radix-.
transform consists of ORJ.1� � stages, and that in the first stage
0 1, in the second 0 1�., then 1��.�������.��.��The samples of
0-point substructures occupy contiguous areas of memory, e.g.
for 0 1��, their indices are Q ��������1������ Q 1�������1�����
Q 1��������1������and Q �1�������1���

It is worth noting here that usually higher-radix structures as in
(1) can be broken down into smaller ones. For example,
computations inside butterflies of radix-2s FFTs can be defined
in terms of two-point structures, V� is an integer, hence, the
algorithms can be treated as radix-2 ones with variable butterfly
definition. Conversely, we can agglomerate several low-radix
butterflies into ‘superstructures’ forming in this way high-radix
realizations of algorithms. Both techniques can be combined for
optimization of algorithm realization, see [5] for minimization of
the split-radix FFT load/store counts. The conclusion is that we
have a freedom in realization of a radix-. algorithm, it could be

radix-., radix-.V��or even radix-V .  one.

They are many FFT-like radix-. transforms [6], [7]: FFT,
including split-radix FFT, fast algorithms for DWHT, DHT (its
flowgraph is reversed, i.e. 0 ��������1), slant transform (with
slight irregularities in its flowgraph), and separable
multidimensional generalizations of all of them. Some circular
convolution algorithms for 1 being a power of . are computed
using two radix-. structures: forward followed by the reversed
one (i.e. firstly 0� values grow, then diminish). The DCT-like
transforms include different types of DCT and DST with their
multidimensional generalizations. Rader DFT algorithms for
prime numbers are constructed using circular convolution
algorithms of sizes 1��, but because of input/output data
permutations they belong rather to the DCT-like transform class.
The prime factor and Winograd Fourier transform algorithms are
mixed-radix transforms, i.e. transforms with variable .� value.
Finally, polynomial transforms of sizes being powers of . also
consists of butterflies, but the addressing scheme for them is
somewhat more complicated than for FFT or DCT.
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Radix-. transforms are both spatially and temporally local.
Nevertheless, in scientific computations, and especially in
solving multidimensional or multivariable problems sizes of the
processed data vectors may be larger than the cache. Moreover,
even small but not spatially local while highly regular tasks (e.g.
transforming of a sub-block of multidimensional data) may cause
problems with cache conflicts. In all such situations we can
expect severe degradation of software performance.
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This is the radix-2 algorithm of size 1 �U�defined by (2), U�is an
integer. As can be seen, no constants are involved in evaluation
of functions I�>�@�� I�>�@. For very large transform sizes numbers
0��� for some first transform stages are multiplicities of
FDFKHBVL]H, which results in the following conflict problem with
direct-mapped caches:

U��←�[�0���Q� ���FDFKH�PLVV��U���U���U��DUH�UHJLVWHUV�
U��←�[�Q� �� FDFKH�PLVV�DQG�FRQIOLFW��[�0���Q��HUDVHG�
U��←�U����U� ���IXQFWLRQ�I�>�@�
U��←�U����U� ���IXQFWLRQ�I�>�@�
[�Q��←��U� ���FDFKH�KLW�
[�0���Q��←��U� ���FDFKH�PLVV�DQG�FRQIOLFW��[�Q��HUDVHG�

As can be seen, we have here three cache misses, a great burden
for a program consisting of only two arithmetic operations. In
consecutive loop iterations index Q is incremented by 1, hence,
burst transmission from DRAM may help here a lot, but only if
the control manage to read two data flows, one for consecutive
[�Q�, and the other for [�0���Q�. Notice that the conflicts are
avoided for associative caches, and the number of misses
diminish to two, the 2-way associative cash suffices. Notice also
that there are no immediate conflicts for DCT-type transform
defined by (3), as the distance between samples�0����Q�is an odd
number.

Another problem is the minimization of cache miss number for
the whole transform computation. Notice that after execution of
the loop embracing above program the direct-mapped cache
contains last data samples [�0����� [�0�������� [�0�FDFKHBVL]H��� It
is then reasonable to run the loop in the following stage
backwards starting with loads of data samples in the cache. In
this way we diminish the number of misses by FDFKHBVL]H. This
implies two guidelines for a program realization:

•  the program control should go depth-first inside the
algorithm structure, as it is in recursive call algorithm
realizations;
•  the directions of loops execution interleave, forward and
backward.

For associative caches the guidelines are the same, the only
difference is that the cache contains two data sequence: [�0������
[�0���������� [�0���FDFKHBVL]H����� and� [�0����� [�0�������� [�0�
FDFKHBVL]H����� hence, the number of saved cache misses in the
next stage is FDFKHBVL]H��. The rules for DCT-like transforms are
analogous.

A totally different approach to consider here consists in use of
fast matrix transposition based algorithms originally devised for
processing of externally stored data [6]. In this method we
exploit the high DRAM burst read/write rate for minimizing the
total miss penalty rather than the number of isolate cache misses.

Let us calculate the minimal number of cache misses for DWHT
of size 1 ⋅4 FDFKHBVL]H� on a computer with an associative
cache.  In the first stage all loads are cache misses, i.e. their count
is 1. Then, lower half of samples is processed with 1���
FDFKHBVL]H�� �1���cache misses, after which the third quarter of
data vector is processed with initial 1��� misses and then no
misses till the end of algorithm flowgraph. Then the program

control returns to process the fourth quarter of data samples, and
there are 1���cache misses. Finally, the first half of data vector is
processed with 1���1���initial misses, and additional 1���misses
when the control comes back to process the first quarter of data
vector (or the second, it depends on actual realization).

Summarizing, in total we have 18
52 �cache misses, in general,

 �ORJ�N���1����N���FDFKHBVL]H�� �ORJ�N�����1�FDFKHBVL]H���
N 1�FDFKHBVL]H��N≥�.

If the guidelines are ignored, this number could be 1ORJ�1 (1
for each stage), as for the simple stage-after-stage strategy, but it
is only 1��for the first stage misses when 1≤FDFKHBVL]H whatever
the strategy is.
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As it has been pointed out, we can agglomerate radix-2 DWHT
butterflies into larger structures making in this way higher-radix
DWHT algorithm realization. For example, if we combine four
butterflies for data samples [�Q��� [�Q�0����� [�Q�0����� and
[�Q��0����from two consecutive algorithm stages, then its radix-
4 realization is formed. Then, combination of two such radix-4
butterflies with four radix-2 ones in the following stage forms the
radix-8 algorithm realization, and so forth. Analysis of the
realizations goes the same way as that of the radix-2 one. If the
direct-mapped cache size is 0�.�or less, . �V, V is an integer,
then every load and store of the L-th datum [�Q�L0�.�� removes
the previous one [>Q��L���0�.@� from the cash; in general for
cache size 0�/�the load or store of variable [�Q�0�/��erases the
variable [�Q�. This is a conflict during computation of a .-point
butterfly, the same that has been described for the radix-2
realization, .� is a multiplicity of number 2. To avoid it at least
2s-way associative caches should be applied. We can also see
here the key advantage of high-radix algorithm realizations,
while the number of arithmetical operations inside a radix-.V

butterfly is growing as ��V.V��� the number of cache conflicts
increases as ��.V�, only.

The two guidelines for radix-2 transform program realizations
apply to that of the radix-. transforms, too. However, the
calculation of the number of cache misses for an /-way
associative cache becomes somewhat more complicated. Notice
that in the case when 0�/≥FDFKHBVL]H� if /≥. then there are .
data sequence that remain in the cache after execution of a stage
of an algorithm, and /�ones if /�.: [�0�-�����[�0�-��������[�0�-�
FDFKHBVL]H�-���[��0�-�����[��0�-��������[��0�-�FDFKHBVL]H�-���«�
[�0�����[�0��������[�0�FDFKHBVL]H�-���-�is equal either to .�or to
/. Additionally, if 0�.�FDFKHBVL]H� then the .�value should be
replaced by the 0�FDFKHBVL]H�one. Taking this into account for
/≥.�we receive the following formula on the minimal number of
cache misses when N is an integer power of .��. �V:

�ORJ.N���1��� 1
1

−
−

.

N FDFKHBVL]H�.� ������(4)

in general, instead of N the greatest integer power of .�lower than

N�should be taken, and a term 1�
.N

VL]HFDFKH

mod
_ �added.� In case when

/�.�  the cache conflicts during computation of .-point
butterflies should be considered, hence, the formula is even more
complicated.
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Tables of constants (usually multipliers) add another dimension
to the radix-. transform addressing analysis. Except for
convolution algorithms the table sizes need not be greater than 1:
for FFT and DCT/DST samples from a quarter of sine period
suffices, which means 1���� and 1�� samples, respectively,
however, availability of samples from half period of sine and
cosine functions (�1��� constants) makes FFT programming
simpler. If a complex multiplication and analogous operation of
DCT/DST is computed using 3 real multiplications and 3 real
additions, then two tables of such sizes are needed. Note that
each constant is stored in the cache at least once causing at least
one cache miss, hence, necessity of two tables undermines the
reason for computing complex multiplications by the ‘fast’ 3-
multiplication algorithm. On the other hand, sizes of constants
tables for multidimensional transforms, and hence one-
dimensional prime factor FFTs, form a small fraction of the total
data samples number. If the constants table is designed for an
algorithm of size 1PD[, then an 1-point algorithm uses multipliers
for indices: RIIVHW�� RIIVHW�1PD[�1�� RIIVHW��1PD[�1�� ����
RIIVHW�1PD[�1PD[�1; RIIVHW �� for FFT and RIIVHW ���1PD[�1� � for
DCT/DST. This means that the whole table addressing range is
always used, even for the smallest transform sizes, hence, the
program may appear to be not spatially local.

The above observations mean that they are no cache misses
problems with radix-. transforms for 1≤FDFKHBVL]H����only; for
direct-mapped caches data and constants should be located in
such a way that they are mapped to different cache address
spaces. Starting with 1 FDFKHBVL]H��however, the butterfly final
data stores in first transform stages ‘blow up’ constants out of the
cache, at the same time loading from an oddly defined constants
table may cause erasing of data samples in pseudo-random cache
locations. If the size of constants table is greater than
FDFKHBVL]H��, then constants-data (and even constant-constant)
conflicts occur even if 1≤FDFKHBVL]H���

 It is then reasonable to write two versions of radix-. transform
programs, ‘normal’ for 1≤FDFKHBVL]H����and special software for
first stages of very large transforms. Constant-related cache
conflicts can be almost totally avoided, in fact. Firstly, in first
transform stages constants can be recursively generated in
processor registers accordingly to the prescription from [8].
Unfortunately, we have here a contradiction between constant re-
use [8], and the data-conflict minimization strategies; if the
program is written in accordance with guidelines from the
previous section the constants should be generated 1�0�times for
each 0-point part of a stage separately, in the opposite case we
can ‘spare’ only �ORJ.N���FDFKHBVL]H�.�associative cache misses,
and not >�N�����.���@FDFKHBVL]H�.�as in (4)�

Secondly, a prime factor algorithm can be implemented, in which
at least some small modules need so few constants that they can
be stored in processor registers. For example, 32 floating-point
registers is enough for storing constants and executing 15-point
DFT or DCT/DST modules as the first transform structures; then,
if 1� is divisible by 15 and 1���≤FDFKHBVL]H��, the following
algorithm structures can be performed with no more than �1���
constant-related cache misses. For direct-mapped cache two
constants tables are needed, one maps into the upper cache

addresses space: FDFKHBVL]H���� FDFKHBVL]H������ ����� FDFKHBVL]H��
and is used with transforms processing data mapping into lower
one: ��������FDFKHBVL]H����; then the second table is used for data
mapping into the upper cache address space. For associative
caches only one table is needed, hence, the number of constant-
related cache misses can be halved, but only under the condition
that cache block replacement logic [2] can be forced to keep
constants in the cache all the time.
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In the paper influence of multilevel computer memory
organization and caches in particular on the performance of
radix-. transforms (e.g. one- and multi-dimensional FFT, DCT,
DWHT) is analyzed. It is shown how to organize computations
for obtaining minimal numbers of data cache misses, and
formulae for their numbers are given. It is also suggested how to
minimize numbers of constant-related cache misses in FFT and
DCT/DST algorithms. In all cases new program writing
guidelines concern processing the most problematic  data vectors
of sizes greater than half of the computer cache size.

An image that emerges here is that caches do not simplify writing
of the fastest possible digital signal processing software, in fact,
in some cases they can preclude application of potentially the
best solutions. Namely, the highly regular structure of a fast
transform may interfere with cache mapping strategy. A much
more flexible and adequate here are the ORFDO�PHPRU\�EORFNV�[9],
unfortunately, they are usually not implemented in general
purpose computers.
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