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ABSTRACT

Turbo Estimation Algorithms (TEAs) for non random param-
eters are able to yield high accuracy estimates by means of an it-
erative process. At each iteration, a noise reduction is performed
by means of anExternal Denoising System(EDS), which exploits
the estimation results obtained at the previous step; the enhanced
data are then input to the masterEstimation Algorithm(EA) for
next iteration. Recently, a basic TEA scheme has been proposed
in the context of modal analysis, which makes use of the Tufts and
Kumaresan (TK) algorithm as the master EA, and of a multiband
IIR filter as the EDS. In this paper, two improvements of this basic
scheme are proposed; the former implies a different design of the
EDS, able to achieve better estimation accuracy while reducing the
outlier probability; the latter permits the autodetermination of the
number of modes making up the signal.

1. INTRODUCTION

A new class of parameter estimation algorithms (EA), calledTurbo
Estimation Algorithms(TEA), has been recently introduced [1].
The basic idea is that each EA must perform a sort of intrinsic
denoising of the input data in order to achieve reliable estimates.
Optimum algorithms implement the best possible noise reduction,
compatible with the problem definition, and reach the lower bound
of the estimation error variance; however, their computational com-
plexity is often overwhelming, so that in real life one must fre-
quently resort to suboptimal algorithms; in this case, some amount
of residual noise which impairs the estimation process could be
still eliminated. The TEA methods reduce the residual noise by
means of a closed loop configuration, reported in Fig. 1, in which
an external denoising system (EDS), fed by the master EA output,
processes the input data so as to reduce the residual noise gener-
ating an enhanced signal to be input to the EA for next iteration.
The Convergence Check(CC) module controls the iterative pro-
cedure termination on the basis of a predetermined convergence
criterion. The working principle of such schemes can be described
in terms of a more generalturbo principle [2], well known in an
information theory context.

In [1], a TEA for modal analysis is described, which employs
the Tufts and Kumaresan (TK) method [3, 4, 5] as a master EA.
The described algorithm, calledTK Algorithm with Iterative Fil-
tering (TKIF), is able either to achieve the same performance of
the simple TK, with reduced computational complexity, or to im-
prove the TK performance, also in quite severe noise conditions,
maintaining the same computational complexity. In this paper, two
improvements of the basic TKIF scheme are proposed. The former

implies a different design of the EDS, able to achieve better esti-
mation accuracy while reducing the outlier probability so making
possible the realization of high resolution frequency estimation;
the latter permits the autodetermination of the number of modes
making up the signal.

2. THE MODAL ANALYSIS PROBLEM AND THE TK
ALGORITHM WITH ITERATIVE FILTERING (TKIF)

The modal analysis deals with signals represented by the sum of
undamped sinusoidal components ormodes, whose parameters are
deterministic but unknown, and a random noise. The algorithms
must estimate (some or all) the mode parameters, based on a set of
measured data, which can be modeled as

y[n] =

MX

m=1

Am cos(2�fmn+ 'm) +w[n] (1)

whereM is the number of modes which make up the signal (often
considered as knowna priori), Am, fm, and'm are respectively
the amplitude, digital normalized frequency and initial phase of the
m-th sinusoidal mode, andw[n] is a realization of a noise process
W [n], which is generally assumed to be white Gaussian with zero
mean and variance�2w.

The TKIF algorithm is conceived as a development of the ba-
sic Tufts and Kumaresan method [3, 4, 5] for the mode frequency
estimation. In this section, the TKIF algorithm is briefly described;
more details and the theoretical principle of its operation are re-
ported in [1]. The TKIF scheme is shown in Fig. 2.

The block labeledHk(z), wherek � 0 is the index of an iter-
ative process, is a digital multiband filter performing a noise sup-
pression which, for each iterationk � 1, benefits from the knowl-
edge of the frequency vector estimated at the previous step,f̂k�1.
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Figure 1: General scheme of a Turbo Estimation Algorithm



In the general TEA context, this filter acts as the EDS block. The
system inside the dotted box represents the standard TK scheme,
which acts as the master EA; it encompasses theSingual Value De-
composition(SVD) module, the largest singular values selection
block, which can be interpreted as an intrinsic denoising process
[1], and the mininum norm and polynomial root selection mod-
ules, which yield thek-th iteration vector frequency estimatef̂k.
The convergence criterion is based on a threshold comparison of
thedifference vector̂dk = jf̂k � f̂k�1j.

At the initialization stepk = 0, the filtering is omitted (H0(z) =

1; s0 = y) and a rough pre-estimate off , f̂0, is obtained using the
TK algorithm with relatively small values ofN andL, whereN
is the number of points used by the TK basic algoritms, andL is
the Prony filter order [3]. Then, at each step of subsequent itera-
tion, the IIR multiband filter is designed, exploiting the knowledge
of the previous cycle frequency estimatesf̂k�1, andy is passed
through the filterHk(z), giving rise tosk. At this point, sk is
processed by the TK algorithm and a new frequency estimatef̂k is
worked out. The procedure stops at theK-th iteration according to
the preassigned convergence criterion, and the last iteration yields
the final estimated frequency vectorf̂K = f̂ . The key feature of
TKIF lies in its capability of progressivelyrefining the estimates
f̂k, thanks to the noise reduction performed on the measured data
y by the filtering operation.

In [1], Hk(z) is implemented as an IIR filter

Hk(z) =

QNw

i=1
(z � wi)QNp

m=1
(z � p

(k)
m )

(2)

whereNw andNp are respectively the numbers of zeroswi and
polesp(k)m of Hk(z). For the sake of simplicity, only the pole
locationsp(k)m are updated at each iteration. In the actual imple-
mentation, this filter is also subject to an amplitude equalization in
order not to privilege any frequency with respect to the others.

The design of the EDS boils down in the selection of param-
etersNp, andNw, of the zeroswi and initial polesp(0)m (all these
operations are made once and for all) and in the definition of a
procedure of pole location updating. In the simplest solution ad-
dressed in [1], the filterHk(z) exhibitsM pairs of complex con-
jugate poles, where the numberM of modes is assumed to be
known. The pole locations are defined asp

(k)
m = mp � e

j2�f̂m;k�1 ,
1 � i �M ; their magnitudemp is independent ofk, andf̂m;k�1
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Figure 2: Scheme of the TKIF algorithm

are the estimated frequencies at iteration(k � 1) (i.e. the com-
ponents of the estimated vectorf̂k�1). As for the numerator of
Hk(z), it has been experimentally verified that a proper choice is
to introduce two transmission zeros at the extreme frequencies of
the domain, that is atf = 0 (w1 = 1) andf = 0:5 (w2 = �1).
The main reason for this choice lies in the fact that the noise com-
ponents close tof = 0 andf = 1

2
area priori eliminated without

affecting the significant signal components; moreover, in the pres-
ence of these transmission zeros, the overall probability of outlier
gets sensibly reduced [1].

The valuemp of the pole magnitude could be arbitrarily cho-
sen in the range[0; 1[, excluding the upper extreme to guarantee
stability. However, the choice of this parameter is crucial as for the
TKIF method performance, as it affects the filter frequency selec-
tivity, and consequently its effectiveness in rejecting the residual
noise. A natural choice would be to select values ofmp very close
to unity. However this choice presents two serious drawbacks:

� A high frequency selectivity involves that the filter impulse
response time decay is slow; this induces a long transient
in the filtered signalsk. As the TK estimation algorithm
must be applied only to the steady-state signal, a long tran-
sient leads to the need for extra measured datay[n], in order
to accommodate both the transient (to be skipped) and the
steady-state data to be processed by the EA. However, it
must be remarked that this number of extra data little affect
the computational complexity, as they are only used in the
filtering process and do not enter the SVD module, which
virtually determines the TEA algorithm complexity [1];

� it has been experimentally verified that the filter selectiv-
ity is correlated with the overall outlier probability. This
can be intuitively explained noticing that, when the pre-
estimated frequencies are imprecise (due either to an outlier
occurrence in the initialization EA or to simple estimation
variance), a very selective filtering around the pre-estimated
frequencies could completely cut off some of the true sig-
nal components, forcing an outlier in the overall estimation
process. On the other hand, if less selective filters are em-
ployed, an initial outlier can be recovered by means of the
noise suppression mechanism.

As a consequence of these facts, a moderately high value of
mp must be selected. Simulation results have shown that the prob-
ability of outlier steeply increases whenmp exceeds 0.99; there-
fore, values in the range[0:97; 0:99] have been considered.

3. MODIFIED TKIF ALGORITHM FOR HIGH
ACCURACY ESTIMATION

In this section a modification of the TKIF algorithm is proposed,
able to appreciably improve the estimation accuracy and control
the probability of outlier, with a negligible increase of the com-
plexity. It is based on the following considerations:

- When the value ofmp is high, say in the range[0:97; 0:99],
the EDS filterHk(z) is very selective, and the estimation
accuracy is very high; however, the TKIF is subject to a
non negligible probability of outlier if the SNR is low and
the EA yielding the pre-estimate operates below or close to
the outlier threshold.

- When the value ofmp is low, say in the range[0:90; 0:96],
the denoising filter is less selective, and the estimation accu-
racy can be worse, but the probability of outlier is reduced.



Table 1: Comparison between TKIF and modified TKIF in terms
of the individual estimation error variance; three mode signal

�21;K �22;K �23;K
TKIF 6:64 � 10�8 6:92 � 10�6 2:50 � 10�6

Modified TKIF 6:39 � 10�8 6:96 � 10�8 5:56 � 10�8

Therefore, a straightforward solution to improve the TKIF perfor-
mance is to modify (namely, to augment) the value ofmp at each
iteration. In this way, the first iterations with a relatively low value
of mp reduces the risk that an outlier occurs, while the last iter-
ations with high values ofmp refine the estimation, appreciably
reducing the absolute error and the variance. The convergence to-
wards a new settling point could be slower than in the original
TKIF algorithm, requiring a larger number of iterations, but an
improved accuracy is reached.

3.1. Experimental results

The proposed method has been tested withmp values linearly in-
creasing in the range[0:9; 0:99] with steps of 0.03. The test signal
is made of three sinusoids with frequenciesf = [0:1; 0:2; 0:4],
initial phases' = [0:1; 0:2; 0:1], amplitudesA = [1; 1; 1], and
with SNR=5 dB.

In Table 1 the performance of TKIF and modified TKIF are
compared in terms of the individual estimation error variances.
The algorithm parameters areN = 50 andL = 9. The simple
TKIF algorithm is processed with the fixed valuem = 0:98; for
both algorithms, the number of iterations isK = 4.

It can be noticed that the modified TKIF method achieves an
appreciable reduction of the estimation error variances (which ap-
proach the Cram´er-Rao bound, of the order of10�9 for all the
three modes) without affecting the computational load. In fact,
this latter practically depends only on the number of data points
entering the SVD module, and therefore is the same for the two
algorithms. The only drawback of the modified TKIF algorithm is
the need for extra data necessary to cope with the long transient
of the more selective filters; however, the filtering process little af-
fects the algorithm complexity [1]do not influence the algorithm
complexity.

4. TKIF WITH AUTODETERMINATION OF THE
NUMBER OF MODES

A limitation in the methods deriving from the Prony family is that
the number of modes,M , must be knowna priori. Many algo-
rithms have been developed to determineM and some of these
are based on the singular value decomposition [6]. However, these
methods do not work properly if the modes are characterized by
different amplitudes, and their performance is heavily affected by
a critical threshold parameter [7]. In this section we discuss an
improvement of the TKIF method, which is able to recognize au-
tomatically the number of modes and overcomes the mentioned
drawbacks.

Let us consider a signal made of the superimposition ofM
modes, withM unknown, plus additive noise, and let us assume
that the TKIF algorithm for frequency estimation is applied intro-
ducing and evaluating the frequencies of a redundant number of

modesM1 > M . If the algorithm parameters are properly cho-
sen, the set ofM1 estimated frequencies will certainly containM
values very close to the true mode frequencies, and(M1�M) spu-
rious values orfalse frequencies, due to the noise and randomly
distributed along the whole frequency axis. A possible way to
identify the correct modes within the redundant set of estimated
frequencies is to partition the input sequence into a numberNb of
disjointed blocks, and to run the TKIF algorithm on each block,
with redundant number of modesM1. The segmentation guaran-
tees that, under the assumption of white gaussian noise, the es-
timates obtained from each block are statistically independent of
each other. From the comparison among theNb vectors ofM1

estimated frequencies, it is possible to identifyM components of
each vector (corresponding to the true frequency values) which are
correlated with the corresponding components of the other vectors,
while the remaining(M1 �M) components should be uncorre-
lated because are due to the noise. This procedure allows one to
estimate both the number of modesM and their corresponding
frequencies at the same time. Different criteria can be devised to
measure the similarity between pairs of components belonging to
two different vectors of estimated frequencies. In this paper, we
assign atoleranceEt, which can be identified with the estimation
accuracy; two frequencies belonging to different vectors are con-
sidered correlated if their absolute difference does not exceed the
tolerance threshold. Then, when the set of correlated frequencies
is worked out, the final estimates can be obtained as the average of
the estimates on each block.

The main problems which could arise from the application of
this method are:

1. some false frequencies related to the noisy components can
be so close to each other to be selected as true frequencies
by the comparison procedure. This event is extremely un-
likely, as the spurious frequencies are statistically indepen-
dent of each other; its probability can be virtually reduced
to zero by processing more than two data blocks (three or
four blocks are generally sufficient);

2. some true frequencies are not correctly estimated in one or
more blocks, and therefore are not selected by the compari-
son procedure. In order to limit the probability of this event
(which can be considered as an outlier), a very precise esti-
mation procedure, such as the modified TKIF described in
Sect. 3, must be employed.

The method has been tested on many different signals, in sev-
eral SNR conditions. As a first example, we report the frequency
estimation results obtained on a synthetic signal made ofM = 4
modes with digital frequenciesf = [0:1; 0:2; 0:3; 0:4] and ampli-
tudesA = [1; 1; 1; 1]; the SNR is 10 dB. The signal has been split
into Nb = 4 blocks ofN = 80 points. The parameterM1 has
been fixed to 10, so that 10 frequencies per block are estimated
by means of the TKIF algorithm; these frequencies are reported in
Table 2 with the correct ones in boldface. Then, the frequency se-
lection criterion is applied with a toleranceEt = 0:001, yielding
a final estimate

f̂ = [0:1001; 0:2000; 0:3001; 0:3999]

It can be noticed that the number of modes is estimated cor-
rectly. As another example, the estimation procedure has been
run on a signal made ofM = 3 modes with digital frequencies
f = [0:1; 0:2; 0:4] and amplitudesA = [1; 1; 0:3]; the SNR is



Table 2: Estimated frequencies for a four mode signal andM1 =
10

Frequency Block 1 Block 2 Block 3 Block 4
f1 0.0706 0.0608 0.0468 0.0148
f2 0.0999 0.1002 0.1002 0.0456
f3 0.1468 0.1564 0.1657 0.1001
f4 0.1999 0.1909 0.2003 0.1511
f5 0.2218 0.2001 0.2472 0.1998
f6 0.3000 0.2508 0.2996 0.2322
f7 0.3095 0.3004 0.3368 0.3002
f8 0.3534 0.3523 0.3997 0.3603
f9 0.4001 0.4001 0.4390 0.3996
f10 0.4445 0.4170 0.4519 0.4391

10 dB, and the other algorithm parameters areNb = 4, N = 80,
M10 = 10, Et = 0:005. The obtained final estimate

f̂ = [0:1; 0:20005; 0:4]

shows that the method is able to work properly also when the mode
amplitudes are not equal.

The complexity of the proposed algorithm can seem larger
than that of the SVD-based methods proposed in [6], as the TKIF
algorithm must be run onNb data blocks. However, as discussed,
three or four blocks are generally sufficient to reduce the false
alarm probability; therefore, the complexity increase can be neu-
tralized if the TKIF algorithm is employed instead of the basic TK
with the same estimation accuracy level. Moreover, the method is
sensibly more reliable and flexible than the SVD-based one, and
can be applied also when the number of modes is changing in time.

5. CONCLUSIONS

In this paper, a turbo estimation algorithm has been described in
the context of modal analysis, which makes use of the Tufts and
Kumaresan algorithm as the master EA, and of a multiband IIR
filter as the external denoising system. Two improvements of the
basic algorithm are proposed; the former implies a different design
of the EDS, able to achieve better estimation accuracy while re-
ducing the outlier probability without affecting the computational
complexity; the latter permits the autodetermination of the number
of modes making up the signal. The performance of the algorithm
is very encouraging from both the accuracy and the complexity
point of view.
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