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In this paper, we call it as the 2-D separable canonical transform.

ABSTRACT The 2-D fractional Fourier transform they define is the special
The 2-D Fourier transform has been generalized into the 2-Dcase that{a, b, c, d} = {ces sim, -sin, com} and {e, f, g, h}
separable fractional Fourier transform (replaces 1-D Fourier = {COSB, sirB, -sin3, cog}. Then, in [6], they introduce the 2-D
transform by 1-D fractional Fourier transform for each variable) unseparable fractional Fourier transform. It is the 2-D fractional
and the 2-D separable canonical transform (further replaces thdourier transform of f[(cdx+sind;y)/cos@;-6,), -sirBx+
fractional Fourier transform by canonical transform) in [3]. It co,y /cos@;-8,)], and has the free dimension of 4.

also has been generalized into the 2-D unseparable fractionall hi il furth lize th 2D ¢ .
Fourier transform with 4 parameters in [6]. In this paper, we will n this paper, we will further generalize these 2-D transforms into

introduce the 2-D affine generalized fractional Fourier transform thhe 2-D affine general_ized(;‘ractic_)nal Fourierk’;:ansfo(;rr;] (AGEF-P'
(AGFFT). It has even further generalized these 2-D transforms. 1€ 2-D AGFFT we introduce is unseparable, and has the free

We will show it can deal with many problems that can’t be dealt glmen_slo(;] Og 10. It hé;]s_ extended the_”utlllllty of 2-Dhtransforms
by these 2-D transforms and extend their utility. escribed above. In this paper we will all ignore the constant
phase multiplication.

[. INTRODUCTION II. DEFINITION OF THE 2-D AGFFT
The canonical transform [1] is defined as: The 2-D affine generalized fractional Fourier transform (AGFFT)
a,b,c,d) — ™ is defined as [4]:
e y) = [Kabea (u D B(t)dt @ (AB.CD)
O#CP) (g(x,y))
where (5)
jdpe _jup jap = [ K f,h,x X, y)Ceixd
K (apca (U t)= 1 e20" g h'e2n @) | wsco (1Y) g, y) xdy
2o e ABu @l Dby by,0
and ad-bc = 1. It is the generalization of Fourier transform, and is - a E - %) b E
a useful tool for optical system analysis. It has the additivity a Tz A Tz
property as: c= [€1; Clzg D= (e, dlZE
nge,f ,g,h)(ogza,b,c,d) (f ('[))) = OI(:n,o,p,q) (f (t)) (3) %21 C2200 %121 de
m o @& b0 f0 represents the 16 parameters of 2D AGFFT (Here we restrict all
where 0= Dﬁ O the parameters to be real), and the kernel is:
P qi # dfty hf Kasco . hxy)
The additivity property here ignores the constant phase multipli- ]. ( , 2)
i ias i i i . K1f2 +k 2B +k 30 i
cation. In 1980, N_amlas mtrqduced the fracthnal Fourier trans Q20e@) + + j (plﬁt2+p25@+p3®2)
form (FRFT)[2]. It is the special case of canonical transform that _ [p2det®)
{a, b, c, d} = {cow, sim, -sin, cos}. It is very useful, and has 2 |det(B)|
been used for many applications such as filter design, pattern
recognition, and optical system analysis. detJ(B)((_bzzf+b12h)x+(b21f_bllh)y)
Recently, in [3], they introduce the 2-D fractional Fourier trans- e (6)
form and canonical transform. The 2-D canonical transform theywhere k1 = ghby, - dighyy k2 = 2(-dsbi+ dyobyy)
introduce is equivalent to the following equation: k3 =-dibio+ by pl =3q.boo— aibin
sza,b,c,d,e,f 9h) (g(x, y)) P2 = 2(gbyr-asbi)  P3 = -85y + @by
@) We note, the 2-D separable canonical transform is the special
=C K f,x)K h, x,y)dxd case that g=ay;=b;,=h,;=c;,=C,;=d;,=d,;=0. The following
J:“J:“ (a,b,c,d)( ) (ef ‘g’h)( y)g( y)d y constraints must all be satisfied for the 2-D AGFFT.
where Kgpcdff, X), Kergnfh, ¥) are all defined as equ. (2). It ATc=C"A B'D=D"B )

can be viewed as the combination of 2 1-D canonical transforms.



A'D-C'B=1 ®)

Thus, there are 16 parameters and 6 constraints (2 for equ. (7) z(x,y) = IFT(Z(f h))

and 4 for equ. (8)), so the free dimension of the 2-D AGFFT is
10. In contrast, the free dimension for 1-D canonical transform is

3, for the 2-D separable canonical transform is 6, and for the 2-D

unseparable fractional Fourier transform defined in [6] is 4. The
additive property for the 2-D AGFFT is

ol #01(of82) g )

. ©
=P ™(g(x,y))

) %" B"D_ ml BID BI:I
where -
E:" D"E %:l DIE D%

00 00 K
There are 10 independent basic operations for the 2-D AGFFT I‘WI—W

(correspond to the 10 free dimension of it).

(1) chirp multiplication for the x-axis
(ay1=3=0;1=dy,5=1, G20, others = 0)

(2) chirp convolution for the x-axis

(a1=@,=d;;=d,,=1, by,#0, others = 0)

(3) scaling in the x-axis (#1/d;;, &,=d,,=1, others = 0)

(4) chirp multiplication for the y-axis

(5) chirp convolution for the y-axis

(6) scaling in the y-axis ((4)-(6) are similar with (1)-(3))

(7) multiplication of exp(xy)
(a1=8,=011=0,5=1, G = C= T, others = 0)

(8) convolution of exp(xy/4)/(4rm)"0.5
(an1=ap7=di1=th7=1, by7= by;=n , others = 0)

(9) shearing in the x-axis (g(x, ¥) g(x+py, y) )
(a1=8,=d11=0,5=1, -ay=d,,=p, others = 0)

(10) shearing in the y-axis ( g(x, ¥ g(x, gx+y) )

Z(f,h)=0%BCP) (f (x, y)) O™ (g(x,y)) (1)
(12)

[ll. SOME IMPORTANT PROPERTIES

We list some important properties for the 2-D AGFFT below.

Here we denote ,@'B’C'D)(g(x, y)) by QA,B,QD)(f, h)
(1) Reversible property
OEZDT,_BT’_CT,AT) (OszA,B,C,D)(f (X, y)))= f (X, y) (13)
(2) Orthonormal property
(A,B.C.D) (f %, Y)< (DA,B,C,D) (f Lhx, y)dxdy
=3(f -f',h—h’) (14)
(3) Power preservation property

[ Ja(x,y)exdy= [ * |G a5 .0y (F h)lfdln

(4) Relation with the 2-D Wigner distribution function (WDF)
The 2-D Wigner distribution function (WDF) is:

W(x,y,f,h) :fmfw e Mg gy +£,y +%)
(15)

T
g°(x~,y ~2) ehdn

Then the 2-D WDF of g(x,y), and of G ¢ p)(f,h) has the fol-
lowing relation:

Wiy, F.n) =W, o o, @X ey +hf +bih,

(@41=8p;=01=05,=1, -a,~0h =0, others = 0) BX+aY+hf +h N ax+cy  (16)
We can proof all the 2-D AGFFT can be decomposed as the +d f+ + + +d
combination of the above 10 basic operations. We find the former dll dlb’ @XTGY dZI Zb)

6 basic operations also exist for the separable 2-D canonica(5) Shifting and modulation property
transform, but the later 4 basic operations are not (because for A,B,C,D) [.iDyx ~iD
. " 4 ope @ not ( ol )(e' gl 2yg(x—ml,y—mz))
these operations the x-axis and y-axis are not independent). 17)
_ AiEf 4iEoh _ -
Because the 2-D AGFFT defined as equ. (5) is very complex, so — ete™ G(A,B,C,D) (f B h rZ)
sometimes we would simplify it. In fact, in many cases we can where
set D=0 because it has only a little contributions for many appli- or, O m, 0
cations of the 2-D AGFFT except for the optical system analysis. O OA BO g
For the filter design, we would set D=0, B=I, C=-I (in this case, 2 E: 0 DEQT‘ 2 B (18)
a7=81), and modulate g(x,y) before doing the transform, then 71 %C DB Dnl 0
equ. (5) will become: 520 on2 O
(A,B,C,D,N) ) . o
Of (g(x, Y)) (6) Differentiation and multiplication property

— ® ® omi(ixthy) pai(agx®+2aoxy+agy?) /2 A,B,C.D ag(X,y) ag(X,y) .

=[.[.e [g'(x 2y )iz 0 () o¥BCPI[h, o th oy hsjx [@(x,y)

gl (mx+n2y) EQ(X, y) Ceixdy

—h,jx @(X,y)]

Although this special case only have 5 parameters, but we find it

will have almost all the utility of the 2-D AGFFT defined as equ.
(5) for the filter design. The transform defined as equ. (10) can
filter out all the quadratic type noise of easily.

We can define the 2-D affine generalized fractional correlation as

aG(A,B,C,D) (f,h) +k aG(A,B,C,D)(f’h)
of 2 oh
- ksjf ms(A,B,C,D) (f ) h)_ k4jh @(A,B,C,D) (f 1 h) (19)

where

_kl




Ch g RG(A,B,C,D)S(A,B,C,D) (f’h’f’h)
I:éj: 2 |:| (19a) 0 00 00 00 ]
3 E = —wI—wI—wI—w Kagco fhXY)Knpgcp . ho,1)
51 0 Rgs(X, Y, 0, )dxdyabdt
and from similar way, Bag cosascoffs N f, h) can be calculat-
IV. CALCULATION ed from R¢Xx, y, o, 1). If we also know the auto-correlation of

the input signal, then we can calculate the mean square error for
the optimal filter as:

w
o
I:Igljg

T

Although the 2-D AGFFT seems to be very complex, but in fact
we can implement it in a simple way. If detéB) then the 2-D

00

AGFFT can be decomposed as: MSE:J’_MJ'_DO00 RG(A 5.COGABCD) (f,h,f,h)
(A BO_O | ODEEO i nyhﬂ fhfh)
Ep DE_ HZ)B -1 IE T | OE ~2Razonf, )RS(A,B,c,mG(A,B,c,D)( N1
B (20) 2
%T 1 OB% | OE +zopt(f,h)| RS(A,B,C,D)S(A,B,C,D) (f,h,f,h)dfdh
-1
go BO A 10 The second is the method of the ideal type filter. That is,

That is, the 2-D AGFFT can be calculated by the 4 steps: (a)Z, 5 c py(f,h) (the 2-D AGFFT of the filter) equals to 1 in the

multiply the input function by a quadratic phase function (i.e., passhand, and equals to 0 in the stopband. In the following we

exp(pf+qu+rf)), (b) scaling, (c) 2-D Fourier transform (d) will give an example of the filter of ideal type. Here the signal is

multiplication of a quadratic phase function. This will be easier the fruit with the size of 256*256 (we set the location of (0,0) at

than directly calculating the integration of equ. (5). And for the the center), and the noise is the function as

digital implementation, we can also follow these steps. We can n(x,y) = exp(i*0.001(2§<- 10xy + 1_533)) (23)

sample the function after the quadratic phase multiplication andin fig. 2, we plot the fruit plus the noise. This noise can't be

scaling (i.e. after the step a and b), then do the 2-D FFT, and themoved by the separable canonical transforms defined as equ. (4)

multiply a quadratic phase function with sampling. The com- pecause of the existence of the term eyp(). But we can re-

plexity of the digital implementation is proportion to (Nibt)% move it by the 2-D AGFFT defined as equ. (5) with the parame-

ters B=-C=l, D=0, g=-0.004, a,=&,=0.01, 3,=-0.003. In fig-

ure 3, we show the result of the 2-D AGFFT of the fig. 2 with the
V. APPLICATIONS parameters described above. Then, we use the filter as:

There are many applications for the 2-D AGFFT. For example, Z g ¢ pyf, h) =1 -3(f, h) (24)

the filter design, pattern recognition, optical system analysis, 2-DAnd then, we doing the inverse 2-D AGFFT, and obtain the re-

affine Hilbert transform, signal synthesis, and beam shaping arecovered signal as fig. 4. We find, the noise has been perfectly

all its applications. We will illustrate some of them latter. removed.
(1) Filter design (2) Optical system analysis
The filter for the 2-D AGFFT acts as the following formula: The separable canonical transform has been used for the optical
O _ (DT,—BT,—CT,AT)( (A,B,C,D) system analysis [3]. It can analyze the cylinder lens with the
k(X, y)_ Ok Of (k(X, y)) O (21) width variation direction of x or y-axis. But for the cylinder lens
OE:A,B,C,D) (z(x,y))) with the width variation direction other than x and y-axis, the

separable canonical transform will be fail to analyze it. Instead,

I(r:(l S ;Z:::ﬁ;geﬁ|t2;322(mr;e19r?enrirzlrlée; lc;c;r;\tlozhf/vugnsc,)[gtg:s??‘ntzlewe can use the 2-D AGFFT defined as equ. (5) to analyze it. For
Y Y. Y g example, for the optical system in the fig. 1, the transform func-

filter with 2-D AGFFT. The first is the method of the optimal tion of the first cviinder lens is
filter. Because the 2-D AGFFT is also an orthonormal transform, Y )
jm{y cosa—x sina )/ AL

so the formula of the optimal filter for 1-D FRFT [5] can also be tl(X’ y) =-e (25)
applied here with a little modification. Suppose the correlation t just corresponds to the 2-D AGFFT with the parameters {1, 0
between the input signal g(x,y) and the received signal s(x,y) an 0} where T
the auto-correlation of the received signal s(x,y) have been ' . .
known, then the optimal filter is: E —ksin“a k sin o cosa E
R f,h,f,h o = f1 f1 (26)
Zon(f )= S804 8..0) ( ) (22) a( sinacosa  -kcofa -
PV R (f.h,f,h) =
Sa.B.cD)SABCD) VT ! O fl f1 0

and k=2vA. And the overall system in fig. 1 corresponds to the

where f, h, f, h) can be calculated fro Y, ]
Rons.cosascol ) M. y 2-D AGFFT with the parameters {AB', C, D'} where :

o, 1):



A’ B0 0O wYoo o [2] V. Namias, J. Inst. Maths. Applics., vol. 25, p 241-265, 1980
%;, D'D %2 | % %D (27) [3] A. Sahin, H. M. Ozaktas, and D. Mendlovic, Appl. Opt., vol.
] 37, no. 11, p 2130-2141, 1998
M 0 [ @M/k 0 [4] G. B. Folland, “Harmonic Analysis in Phase Space”, the
where Q= @) —k/fZE Y= E 0 d/ kE Annals of Math. Studies vol. 122, 1989

[5] M. A. Kutay, H. M. Ozaktas, O. Arikan, and L. Onural, IEEE

Trans. Signal Processing., vol. 45, no. 5, p 1129-1143, 1997
y-axis f [6] A. Sahin, M. A. Kutay, and H. M. Ozaktas, Appl. Opt., vol.

i 37, no. 23, p 5444-5453, 1998

-X-axis

Fig. 1 Optical system with the first cylinder lens has the direc-
tion other than x and y axis

(3) 2-D affine Hilbert transform

The 2-D affine Hilbert transform acts as the following equation:
~ _ ~DT-BT,-cT,AT
g(x,y)=0¢ '(Hyo (F,) O

AB,.CD
05 (g(x,y)))
where Fig. 2 The signal of fruit plus the noise (defined as equ. (24))

Hyg (f, 1) =(cosp+ jsingLu(f))(cosh + jsing u(h))
and u(f), u(h) are step functions. We can choose the parameter
as:

(28)

BD ch 100 oO
Ot 0 (30)
BE DD D" 0gpo0 Qp

@l OD 01 VlD

where CD—%) a2 —%2 1
O D

Then, (1, vl1) and (v2, 1) will be the direction of edges to be
emphasize by the Hilbert transform. And we canqf® (1, v1)
and¢ for (v2, 1) to control whether positive or negative edges to
be emphasize, and then use al for (1, v1) and a2 for (v2, 1) tc
control how much we emphasize the edges.

-100 -50 0 50 100

Fig. 3 The 2-D AGFFT of fig. 2
VI. CONCLUSION

We have introduced the 2-D AGFFT, some important properties
of it, its calculation, and its applications for the filter design,
optical system analysis, and Hilbert transform. It generalizes the
2-D separable canonical transform introduced by [3], and mixed
it with the space twisting operation. Thus, we believe the 2-D
AGFFT can not only extend most of the applications for 1-D
fractional Fourier transform, it will also be a useful tool for the
pattern recognition and can deal with the space twisting prob-
lems.
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Fig. 4 The recovered signal



