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ABSTRACT

The 2-D Fourier transform has been generalized into the 2-D
separable fractional Fourier transform (replaces 1-D Fourier
transform by 1-D fractional Fourier transform for each variable)
and the 2-D separable canonical transform (further replaces the
fractional Fourier transform by canonical transform) in [3]. It
also has been generalized into the 2-D unseparable fractional
Fourier transform with 4 parameters in [6]. In this paper, we will
introduce the 2-D affine generalized fractional Fourier transform
(AGFFT). It has even further generalized these 2-D transforms.
We will show it can deal with many problems that can’t be dealt
by these 2-D transforms and extend their utility.

I. INTRODUCTION

The canonical transform [1] is defined as:
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and ad-bc = 1. It is the generalization of Fourier transform, and is
a useful tool for optical system analysis. It has the additivity
property as:
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The additivity property here ignores the constant phase multipli-
cation. In 1980, Namias introduced the fractional Fourier trans-
form (FRFT)[2]. It is the special case of canonical transform that
{a, b, c, d} = {cosα, sinα, -sinα, cosα}. It is very useful, and has
been used for many applications such as filter design, pattern
recognition, and optical system analysis.

Recently, in [3], they introduce the 2-D fractional Fourier trans-
form and canonical transform. The 2-D canonical transform they
introduce is equivalent to the following equation:
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where K(a,b,c,d)(f, x), K(e,f,g,h)(h, y) are all defined as equ. (2). It
can be viewed as the combination of 2 1-D canonical transforms.

In this paper, we call it as the 2-D separable canonical transform.
The 2-D fractional Fourier transform they define is the special
case that {a, b, c, d} = {cosα, sinα, -sinα, cosα} and {e, f, g, h}
= {cosβ, sinβ, -sinβ, cosβ}. Then, in [6], they introduce the 2-D
unseparable fractional Fourier transform. It is the 2-D fractional
Fourier transform of f[(cosθ1x+sinθ1y)/cos(θ1-θ2), -sinθ2x+

cosθ2y /cos(θ1-θ2)], and has the free dimension of 4.

In this paper, we will further generalize these 2-D transforms into
the 2-D affine generalized fractional Fourier transform (AGFFT).
The 2-D AGFFT we introduce is unseparable, and has the free
dimension of 10. It has extended the utility of 2-D transforms
described above. In this paper we will all ignore the constant
phase multiplication.

II. DEFINITION OF THE 2-D AGFFT

The 2-D affine generalized fractional Fourier transform (AGFFT)
is defined as [4]:
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represents the 16 parameters of 2D AGFFT (Here we restrict all
the parameters to be real), and the kernel is:
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where   k1 = d11b22 - d12b21    k2 = 2(-d11b12+ d12b11)

        k3 = -d21b12 + d22b11   p1 = a11b22 – a21b12

        p2 = 2(a12b22–a22b12)   p3 = -a12b21 + a22b11

We note, the 2-D separable canonical transform is the special
case that a12=a21=b12=b21=c12=c21=d12=d21=0. The following
constraints must all be satisfied for the 2-D AGFFT.

  ACCA TT =       BDDB TT = (7)



  IBCDA TT =− (8)
Thus, there are 16 parameters and 6 constraints (2 for equ. (7)
and 4 for equ. (8)), so the free dimension of the 2-D AGFFT is
10. In contrast, the free dimension for 1-D canonical transform is
3, for the 2-D separable canonical transform is 6, and for the 2-D
unseparable fractional Fourier transform defined in [6] is 4. The
additive property for the 2-D AGFFT is
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There are 10 independent basic operations for the 2-D AGFFT
(correspond to the 10 free dimension of it).
(1) chirp multiplication for the x-axis
 (a11=a22=d11=d22=1, c11≠0, others = 0)
(2) chirp convolution for the x-axis
  (a11=a22=d11=d22=1, b11≠0, others = 0)

(3) scaling in the x-axis (a11=1/d11, a22=d22=1, others = 0)
(4) chirp multiplication for the y-axis
(5) chirp convolution for the y-axis
(6) scaling in the y-axis ((4)-(6) are similar with (1)-(3))
(7) multiplication of exp(jτxy)
 (a11=a22=d11=d22=1, c12= c21= τ , others = 0)
(8) convolution of exp(jηxy/4)/(4πη)^0.5
 (a11=a22=d11=d22=1, b12= b21= η , others = 0)
(9) shearing in the x-axis ( g(x, y) → g(x+py, y) )
 (a11=a22=d11=d22=1, -a21=d21=p, others = 0)
(10) shearing in the y-axis ( g(x, y) → g(x, qx+y) )
 (a11=a22=d11=d22=1, -a12=d12=q, others = 0)
We can proof all the 2-D AGFFT can be decomposed as the
combination of the above 10 basic operations. We find the former
6 basic operations also exist for the separable 2-D canonical
transform, but the later 4 basic operations are not (because for
these operations the x-axis and y-axis are not independent).

Because the 2-D AGFFT defined as equ. (5) is very complex, so
sometimes we would simplify it. In fact, in many cases we can
set D=0 because it has only a little contributions for many appli-
cations of the 2-D AGFFT except for the optical system analysis.
For the filter design, we would set D=0, B=I, C=-I (in this case,
a12=a21), and modulate g(x,y) before doing the transform, then
equ. (5) will become:
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Although this special case only have 5 parameters, but we find it
will have almost all the utility of the 2-D AGFFT defined as equ.
(5) for the filter design. The transform defined as equ. (10) can
filter out all the quadratic type noise of easily.

We can define the 2-D affine generalized fractional correlation as
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III. SOME IMPORTANT PROPERTIES

We list some important properties for the 2-D AGFFT below.
Here we denote OF

(A,B,C,D)(g(x, y)) by G(A,B,C,D)(f, h)

(1) Reversible property
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(2) Orthonormal property
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(3) Power preservation property
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(4) Relation with the 2-D Wigner distribution function (WDF)
 The 2-D Wigner distribution function (WDF) is:
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Then the 2-D WDF of g(x,y), and of G(A,B,C,D)(f,h) has the fol-
lowing relation:
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(5) Shifting and modulation property
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(6) Differentiation and multiplication property
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IV. CALCULATION

Although the 2-D AGFFT seems to be very complex, but in fact
we can implement it in a simple way. If det(B)≠0, then the 2-D
AGFFT can be decomposed as:
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That is, the 2-D AGFFT can be calculated by the 4 steps: (a)
multiply the input function by a quadratic phase function (i.e.,
exp(px2+qxy+ry2)), (b) scaling, (c) 2-D Fourier transform (d)
multiplication of a quadratic phase function. This will be easier
than directly calculating the integration of equ. (5). And for the
digital implementation, we can also follow these steps. We can
sample the function after the quadratic phase multiplication and
scaling (i.e. after the step a and b), then do the 2-D FFT, and then
multiply a quadratic phase function with sampling. The com-
plexity of the digital implementation is proportion to (Nlog2N)2.

V. APPLICATIONS

There are many applications for the 2-D AGFFT. For example,
the filter design, pattern recognition, optical system analysis, 2-D
affine Hilbert transform, signal synthesis, and beam shaping are
all its applications. We will illustrate some of them latter.

(1) Filter design

The filter for the 2-D AGFFT acts as the following formula:
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This is just the 2-D affine generalized convolution of the signal
k(x,y) and the filter z(x,y). There are at least 2 ways to design the
filter with 2-D AGFFT. The first is the method of the optimal
filter. Because the 2-D AGFFT is also an orthonormal transform,
so the formula of the optimal filter for 1-D FRFT [5] can also be
applied here with a little modification. Suppose the correlation
between the input signal g(x,y) and the received signal s(x,y) and
the auto-correlation of the received signal s(x,y) have been
known, then the optimal filter is:
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where RG(A,B,C,D)S(A,B,C,D)(f, h, f, h) can be calculated from Rgs(x, y,
σ, τ):
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and from similar way, RS(A,B,C,D)S(A,B,C,D)(f, h, f, h) can be calculat-

ed from Rss(x, y, σ, τ). If we also know the auto-correlation of
the input signal, then we can calculate the mean square error for
the optimal filter as:
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The second is the method of the ideal type filter. That is,
Z(A.B,C,D)(f,h) (the 2-D AGFFT of the filter) equals to 1 in the
passband, and equals to 0 in the stopband. In the following we
will give an example of the filter of ideal type. Here the signal is
the fruit with the size of 256*256 (we set the location of (0,0) at
the center), and the noise is the function as
  n(x,y) = exp(i*0.001(2x2 - 10xy + 1.5y2)) (23)
In fig. 2, we plot the fruit plus the noise. This noise can’t be
moved by the separable canonical transforms defined as equ. (4)
because of the existence of the term exp(iηxy). But we can re-
move it by the 2-D AGFFT defined as equ. (5) with the parame-
ters B=-C=I, D=0, a11=-0.004, a12=a21=0.01, a22=-0.003. In fig-
ure 3, we show the result of the 2-D AGFFT of the fig. 2 with the
parameters described above. Then, we use the filter as:
 Z(A,B,C,D)(f, h) = 1 - δ(f, h)   (24)
And then, we doing the inverse 2-D AGFFT, and obtain the re-
covered signal as fig. 4. We find, the noise has been perfectly
removed.

(2) Optical system analysis

The separable canonical transform has been used for the optical
system analysis [3]. It can analyze the cylinder lens with the
width variation direction of x or y-axis. But for the cylinder lens
with the width variation direction other than x and y-axis, the
separable canonical transform will be fail to analyze it. Instead,
we can use the 2-D AGFFT defined as equ. (5) to analyze it. For
example, for the optical system in the fig. 1, the transform func-
tion of the first cylinder lens is
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It just corresponds to the 2-D AGFFT with the parameters {I, 0,
Φ, 0} where
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and k=2π/λ. And the overall system in fig. 1 corresponds to the
2-D AGFFT with the parameters {A′, B′, C′, D′} where :
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Fig. 1  Optical system with the first cylinder lens has the direc-
tion other than x and y axis

(3) 2-D affine Hilbert transform

The 2-D affine Hilbert transform acts as the following equation:
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and u(f), u(h) are step functions. We can choose the parameters
as:
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Then, (1, v1) and (v2, 1) will be the direction of edges to be
emphasize by the Hilbert transform. And we can use φ for (1, v1)
and ϕ for (v2, l) to control whether positive or negative edges to
be emphasize, and then use a1 for (1, v1) and a2 for (v2, 1) to
control how much we emphasize the edges.

VI. CONCLUSION

We have introduced the 2-D AGFFT, some important properties
of it, its calculation, and its applications for the filter design,
optical system analysis, and Hilbert transform. It generalizes the
2-D separable canonical transform introduced by [3], and mixed
it with the space twisting operation. Thus, we believe the 2-D
AGFFT can not only extend most of the applications for 1-D
fractional Fourier transform, it will also be a useful tool for the
pattern recognition and can deal with the space twisting prob-
lems.
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Fig. 2  The signal of fruit plus the noise (defined as equ. (24))

-100 -50 0 50 100

-100

-50

0

50

100

Fig. 3  The 2-D AGFFT of fig. 2
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Fig. 4  The recovered signal
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