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Abstract wavelet coefficients, gray level statistical features and back prop-

agation neural networks. Among these possible individual micro-

General regression neural networks (GRNNSs) are proposed folc@lcification objects, there are a lot of false detections due to the
selecting the most discriminating features for the automatic N0iS€, blood vessels and dense breast tissue in the mammogram.
detection of clustered microcalcifications in digital mammo- In order to eliminate these false detections, in the second step,

grams. Previously, We have designed an image processing sydndividual microcalcification objects are detected based on a set
tem for detecting clustered microcalcifications. The system usesOf nine structure features by using feed forward neural networks.

wavelet coefficients and feed forward neural networks to identify The system was applied to the database provided by the univer-
possible microcalcification pixels and a set of structure featuresSItY hOSID'_ta|_ of Nijmegen [4]. By using a free response operating

to locate individual microcalcifications. In this work, more fea- Ccharacteristics (FROC) curve to evaluate the performance, our
tures are extracted, and the most discriminating features ardAD system achieved 75% mean true positive detection rate at
selected through the analysis of the GRNNs. The selected feathe cost of 0.5 false positive per image.

tures are incorporated into our image processing system and ) -
applied to a database of 40 mammograms (Nijmegen databasé}) order to improve the performance of our CAD system, a criti-

containing 105 clusters of microcalcifications. Free response@! Step is to add more effective features for the detection of indi-
operating characteristics (FROC) curves are used to evaluate th¥idual microcalcification objects. In this paper, in addition to the

performance. Results show that, by incorporating the proposedne structure fgatures already used, four shape moment features
feature selection scheme, the performance of our system id5], seven invariant moment features [6] and ten second order
improved significantly. histogram related features [7] are added to describe the possible

individual microcalcification objects. Then a feature selection
method based on the general regression neural networks
(GRNNS) [8] is proposed to select the most discriminating fea-
Cancer of the breast is now one of the common forms of Cancert_ure sets. The selected features are then incorporated into our
diagnosed in women. In Australia, 67 out of 10,000 women wereCAD system. Experimental resilts show that b.y using these fea-
diagnosed breast caﬁcer in 1992'[1]. Neither t,he cause of brea t,tjres, the perf_o_rmance O.f our CAD system increased to 90%
cancer nor the means of preventing the disease are well un defr_nea_n true posmve_ detection rate at the cost of 0.5 false po§|t|ve
stood. At present, early detection of breast cancer is the only wa: er image. In partlcglar, our system outperforms Kars_sgme_uer’s

) ! . 4], one of the best in the literature. In the process, it is disco-
to reduce the breast cancer mortality and enhance the cure rate. .

vered that features related to the second order histogram are of

vital importance for the detection of clustered microcalcification.

1. Introduction

One of the important early symptoms of breast cancer in the
mammograms is the appearance of microcalcification clusters.
They have a higher X-ray attenuation than normal breast tissue
and appear as a group of small, localized granular bright spots in
the mammograms. A typical mammogram with clusters of micro-

calcifications is shown in Figure 1(a), and the magnified version
of a cluster of microcalcifications in Figure 1(b).

In our previous work, we have developed a computer aided diag-
nosis (CAD) system for the automatic detection of clustered
microcalcifications based on wavelet coefficients and neural net-
works [2][3]. Our CAD system has two main steps. First, possi- )
ble microcalcification pixels in the mammogram are segmentedFigure 1. (@) A mammogram from the database. (b) The magni-
out and labelled into possible individual microcalcification fied view of a cluster of microcalcifications.

objects by their spatial connectivity. This is achieved by using

(@) (b)



2. Using GRNNS s to Select the Most
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For a given pattern recognition problem, there is a large number Oy Y[?
of features which could be extracted from the objects to be classi- . exo| -2 g
fied. Therefore, it is necessary to select a finite set of features that P 5 2
has the most discriminating power for the classification of the o T
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Given a set oN dimension vector¥ which representing a pat- ni =1 202

tern belonging to one ofi classes, each dimension representing & whereo is the width of the estimating kerneljs the number of
feature describing some propertyYofThe feature selection prob-  samples, ang is the dimension of the input vectér Substitut-
lem is to select a subset of(n < N) features, which contains  ing the probability estimator in (2) into equation (1) gives the

more discriminatory information than any other subset fea- desired conditional mean pfyivenX:
tures inY. 2
n
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The optimal subset of features can be determined by exhaustive z \/exp >
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testing all the possible combinations, which equalsZo 0,0 . n :
i=1 z exp| —
However, even for a moderal¢ andn, this is a large number i=1 20

which makes an exhaustive search infeasible. Instead of usin
exhaustive search, there are three other methods to deal with thi
problem. The first is by experience which has been used by most 2 T

researchers in this field, such as [4]. The second is feature trans- Di = E[X_Xi% EX_ XiE 4)
formation, which is implemented in such a way that the trans-

formed features have less dimension than the original featuresype topology of a GRNN consists of 4 layers: the input layer, the
but have more discriminating power. Principal component analy- hidden layer, the summation layer and the output layer. The func-
sis [9] is one of the well known method of this category. The third tjon of the input layer is simply to pass the input vector variables
is to organize the search method to reduce the number of featurg q g|| the units in the hidden layer. The hidden layer consists of

sets to be evaluated. Sequential Forward Selection (SFS) and) ine training sampl; ... X, When an unknown pattedis
Sequential Backward Selection(SBS) [10] are two methods in

: . ) . 2
this category. In this paper, GRNNs are used as the vehicle tresented, the squared distamxe between the unknown pattern
realize the SFS and SBS methods.

here Di2 is defined as:

and the training sample is calculated and passed through the ker-

. nel function. The summation layer has two units A and B, The
2.1 General Regression Neural Network

unit A computes the summation ekp[—Diz/ BZOZEJ multi-
The GRNNs are memory-based feed forward networks based on,. : . . L
the estimation of probability density function. Originally known plied by they; associated witfx;. The B unit simply computes
as _Nadaraya-Watson regression in the statistics literature, it iShe summationexp[—D.Z/ B%ZBJ _The output unit divides A
rediscovered by Donald Specht [8]. xdie a vector random var- I

iable,y be a scalar random variable, d@dy) represent the joint by B to provide the predication result.

probability density function ok andy. The expected value gf

givenX can be computed by: 2.2 Feature Extraction and Selection
00
_[_ooyf(K y) dy Among the possible individual microcalcification objects seg-
Ely[X = P (1) mented out in the first step of our CAD system, there are a lot of
J‘ oof(x, y) dy microcalcification like objects because of noise, blood vessels

) - ] o and dense breast tissue. This makes the false detection rate rela-
In practice, the probability density function is usually unknown. tjyely high. In order to decrease the false detection rate, a second

So it must be estimated from sample valueX;aindY;. The esti-  step processing based on a set of features of the possible micro-
mator, also called kernel function, proposed by Parzen [11] iscalcification objects is conducted.
used:

In extracting the features, a square neighbourhood of 10 pixels
larger than the possible microcalcification object in diameter is
used to define the background window of each object. We
selected a pool of 31 features as candidates for the feature selec-



tion algorithm. The features are listed in Table 1. The 31 featuresAfter chosero, feature selection methods based on SFS and SBS
can be divided into two groups: structure features and secondalgorithm are use to select the most discriminating features. For
order histogram related features. In order to calculate the seconéach feature set evaluated, a GRNN is constructed to generate the
order histogram features, the second order histogram of each posctual classification results, the leave-one-out method is used to
sible individual microcalcification objects is calculated first. calculate the mean square classification error for that feature set.
The first 15 most discriminating features selected by using SBS
For selecting features, an error function measuring the discrimi-and SFS algorithm respectively and the 12 features selected by
nating power of the feature set being evaluated should be giverboth SBS and SFS are listed in Table 2. It shows that 7 out of the
first. For a pattern recognition problem, the error function is usu- 10 second order histogram related features are among the 15 most
ally the mean squared classification error which is defined as:  discriminating features. This demonstrates that the features
related to the second order histogram play an important role in

E= % Z %di _yigz (5) the detection of individual microcalcification objects.

i=
wherei is thei th test datay; is the output of the GRNN artlis
the desired output.

After the most discriminating feature sets are selected, three feed
forward neural networks are trained using selected feature sets by
SBS, SFS and SBS/SFS respectively. For comparison, another
. feed forward neural network using all the 31 features is also
In_our work, SFS and SBS methods are carried out by theygined. The feed forward neural networks are then incorporated
GRNNs. SFS is a simple bottom up search method, starting withiy 15 our CAD system to detect individual microcalcification
one feature from all the features, which gives the smallest meanypjects, To evaluate the performance of these feature sets, FROC
squared classification error. Then a new feature from the remaing e is used. The performance of the three selected feature sets
ing features is gdded ata time to Fhe current feature set. The NeWomparing with using all 31 features is shown in Figure 2. The
feature added is the one which gives the smallest mean squareg), feature sets selected by SBS and SFS performs better than all
classification error compare to adding others. On the other handszq features. The features selected by the SBS has the best per-
SBS is the top down counterpart of the SFS method. At theformance. It achieves a 90 percent mean true positive rate at the
beginning, all features are included. We then discard one feature. st of 0.5 false positive per image which is much better than our
at a time. The feature discarded is the one that gives the Sma"e%revious result (75% mean true positive rate at the cost of 0.5
mean squared error function by removing it. Thus the feature dis+5|5e positive per image [3]). Shown in Figure 3 is the compari-
carded has the least discriminating power. To find the most dis-¢on of our results using SBS selected features with

criminating feature set, the algorithm will stop at a point where Karssemeijer’s result [4] using MRF model and IPA scaling with
the mean squared classification error begins to increase if furthefyeg) image feature, namely, local contrast(lc), smoothed local
adding or discarding a feature is performed. For finding the ordercqnras(ics), and the line/edge feature(lin). It clearly shows that

of the discriminating power of all features, the algorithm will 5, method with the features selected by SBS outperforms
continue until all the features are added or discarded. Karssemeijer’s.

3. Experimental Results 4. Conclusions

In order to select the most discriminating features, a training/test—rhis paper demonstrates a method of selecting the most discrimi-
set of true and false individual microcalcification objects are pro- nating features for the identification of individual microcalcifica-

duced from the database. The training data set consists of 17455 objects using the GRNNs. The results show that features
true individual micocalcification objects and 164 false individual gjated to the second order histogram play an important role in
microcalcification objects. All the 31 features of each true or yhe detection of individual microcalcifications objects. By using

false individual microcalcification are first calculated. As a pre- ine features selected by the GRNNs, our CAD system shows

PFOCESSiNQ. step, these features are normalized between -1 a”ds:hperior performance over the other reported works in the litera-
before fed into the GRNN. ture.

In order to use the GRNN as the classifier, we first have to choose
the width of the probabilitg. Since we have a limited number of
training/test data. A cross validation method called Ieave-one-ouLl_h_ ki all d b f A i

is used. For a particular value @fvith a training/test data set of IS work 1S pa_rtla y supported by a grant from Australian
n samples, the leave-one-out method moves one sample at a timlgesearch Council
and constructs the GRNN using the remainingl)( samples.
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Table2: Features selected by SFS and SBS method.

Feat:ﬂr:tfc;acljectlm Selected Features
SFS 1,2,4,7,8,9,11,14,22,23,24,25,26,27,29
SBS 2,6,7,8,9,10,14,19,22,23,24,25,26,27,29
SFS & SBS 2,7,8,9,14,22,23,24,25,26,27,29
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Figure 2. Comparison of FROC performance the among the fea-

ture selection methods.

Table 1: List of features in the feature selection.

Feature Name Description

1 [Mean average gray level, stdnd-

2 [Standard Deviation ard deviation of gray level,

3 |Edge edge strength and bagk-

4 |Background(bac) ground gray level of each

objects.
5 |Foreground Backgroundffbr=mean/bac
Ratio(fbr)
6 |Foreground Background{fbd=mean-bac
Diffeence(fbd)

7 |Difference Ratio(dr) dr=(mean-bac)/(mean+pac)

8 |Area size of the object

9 |Compactness C=perimetef/area

10 |Elongation E=max. axis/min. axis
11-14|Shape Moment 1-4 4 Shape moment feature[5]
14-21|Invariant Moment 1-7 7 Invariant moment[6]

22 |Contrast

23 |Entropy

24 |Angular Second Momen

25 |Inverse Different Momenit

26 |[Correlation Second order histogram

27 |Variance related features[7]

28 |Sum Average

29 |Sum Entropy

30 |Sum Variance

31 [Difference Entropy
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Figure 3. Comparison of FROC performance of the SBS selected

features to Karssemeijer’s result.



