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ABSTRACT

Traditional block-based image classi�cation algorithms, such
as CART and VQ based classi�cation, ignore the statisti-
cal dependency among image blocks. Consequently, these
algorithms often su�er from over-localization. In order to
bene�t from the inter-block dependency, an image classi�-
cation algorithm based on a hidden Markov model (HMM)
is developed. An HMM for image classi�cation, a two di-
mensional extension from the one dimensional HMM used
for speech recognition, has transition probabilities condi-
tioned on the states of neighboring blocks from both di-
rections. Thus, the dependency in two dimensions can be
re
ected simultaneously. The HMM parameters are esti-
mated by the EM algorithm. A two dimensional version of
the Viterbi algorithm is also developed to classify optimally
an image based on the trained HMM. An application of the
HMM algorithm to document image and aerial image seg-
mentation shows that the algorithm performs better than
CART.

1. INTRODUCTION

For most block based image classi�cation algorithms, such
as CART [1], images are divided into blocks and decisions
are made independently for the class of each block. This
approach leads to an issue of choosing block sizes. We do
not want to choose a too large block size since this obviously
causes crude classi�cation. On the other hand, if we choose
a small block size, only very local properties belonging to
the small block are examined in classi�cation. The penalty
then comes from losing information about surrounding re-
gions. A well known method in signal processing to at-
tack this type of problem is to use context information.
Trellis coding [2] in image compression is such an exam-
ple. How to introduce \the incorporation of context" into
classi�ers is what is of interest to us. Previous work [3] has
looked into ways of taking advantage of context information
to improve classi�cation performance for document image
segmentation. Both block sizes and classi�cation rules can
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vary according to context. The great improvement achieved
demonstrates the potential of context information to help
classi�cation. The purpose of this paper is to introduce a
two dimensional hidden Markov model (2-D HMM) as a
general framework to build context dependent classi�ers.

Hidden Markov models have earned their popularity
mostly from successful application to speech recognition [4,
5, 6]. Despite the weakness of the Markovian assumption
as applied to speech, they have proven to be a powerful
method in speech processing. The probability mechanism
is as follow: at any discrete unit of time, the system is as-
sumed to exist in one of a �nite set of states. Within each
state there is a �xed probability distribution of generating
a single observation (feature vector). This probability dis-
tribution is typically modeled as a mixture of Gaussian dis-
tributions. Transitions between states take place according
to a �xed probability depending only on the state of the
system at the unit of time immediately preceding (1-step
Markovian). HMMs owe both their name and modeling
power to the fact that these states represent abstract quan-
tities and are themselves never observed. They correspond
to "clusters" of contexts having similar probability distri-
butions of the observed feature vector. Thus the number of
states is a meta-parameter to be chosen in the design.

In this paper, we extend the idea of the HMM to im-
age classi�cation. Since image data is two-dimensional, the
probability of the system entering a particular state de-
pends upon the state of the system at the adjacent obser-
vations in both horizontal and vertical directions. As in
the case of speech, the probability distribution of the fea-
ture vector is modeled as a �xed Gaussian distribution for
any given state. The main di�culty lies in �nding e�cient
methods to build and apply a two-dimensional model. Sev-
eral techniques are explored here that are required to make
the two-dimensional extension computationally feasible.

In Section 2, we provide a mathematical formulation of
the basic assumptions of HMM. The algorithm is presented
in Section 3. Section 4 discusses techniques to speed up
the algorithm, so that it is computationally feasible. The
results are given in Section 5. We conclude in Section 6.



2. BASIC ASSUMPTIONS OF 2-D HMM

As in all block based classi�cation systems, an image to
be classi�ed is divided into blocks and feature vectors are
evaluated as the statistics of the blocks. The image is then
classi�ed according to the feature vectors.

The 2-D HMM assumes that the feature vectors are
generated by a Markov model which may change state once
every block. Suppose there are M states, the state of block
(i; j) is denoted by si;j . The feature vector of block (i; j)
is xi;j and the class is ci;j . We use P (�) to represent the
probability of an event. We denote (i0; j0) < (i; j) if i0 < i
or i0 = i; j0 < j; in which case we say that block (i0; j0) is
before block (i; j). For example, the blocks before (i; j) in
Fig. 1 are the shaded blocks. This sense of order is the same
as the raster order of row by row. We would like to point
out, however, that we introduce this order only for stat-
ing the assumptions. In classi�cation, we do not classify
blocks one by one in such an order. Our classi�cation al-
gorithm tries to �nd the optimal combination of classes for
many blocks jointly. A one dimensional approach of joint
classi�cation, assuming a scanning order in classi�cation, is
usually suboptimal.

The �rst assumption we make is that

P (si;j jcontext) = am;n;l ;

where context = fsi0;j0 ;xi0;j0 ; (i
0
; j
0) < (i; j)g

and m = si�1;j ; n = si;j�1; and l = si;j :

The above assumption can be summarized by the follow-
ing two points. First, the state si0;j0 is a su�cient statistic
of (si0;j0 ;xi0;j0) for estimating transition probabilities. Sec-
ond, the state transition is �rst order Markovian in a two
dimensional sense. Shown in Fig. 1, knowing the states of
all the shaded blocks, we only need the states of the two ad-
jacent blocks in the darker shade to calculate the transition
probability to a next state. We also assume that there is a
unique mapping from states to classes. Thus, the classes of
the blocks are determined once the states are known.

The second assumption is that for every state, the fea-
ture vectors follow a Gaussian mixture distribution. Once
the state of a block is known, the feature vector is condi-
tionally independent of the other blocks. Since any state
with an M -component Gaussian mixture can be split into
M substates with single Gaussian distributions, we con-
strain to single Gaussian distributions in our model. For a
block with state s and feature vector x, the distribution is

bs(x) =
1p

(2�)nj�sj
e
�

1

2
(x��s)

0
�
�1

s
(x��s) ;

where �s is the covariance matrix and �s is the mean vec-
tor.

The task of our classi�er is to estimate the 2-D HMM
from training data and to classify images by �nding the
combination of states with the maximum posterior proba-
bility given the observed feature vectors.

3. THE ALGORITHM

For the assumed HMM, we need to estimate the following
parameters: transition probabilities am;n;l, where m;n; l =

(i, j)

Figure 1: Markovian property of the transition of states

1; :::;M and M is the total number of states, the mean �m,
and the covariance matrix �m of the Gaussian distribu-
tions, m = 1; :::;M . The parameters are estimated by the
EM algorithm [7, 8, 9]. Speci�c to our model, the algorithm
iteratively improves the model estimation by the following
two steps.

1. Given the current model estimation �(p) and the ob-
served feature vectors xi;j , the mean vectors and co-
variance matrices are updated by

�
(p+1)
m =

�i;jL
(p)
m (i; j)xi;j

�i;jL
(p)
m (i; j)

�
(p+1)
m =

�i;jL
(p)
m (i; j)(xi;j � �

(p)
m )(xi;j � �

(p)
m )0

�i;jL
(p)
m (i; j)

;

where L
(p)
m (i; j) is the likelihood of being in statem at

block (i; j) given the observed feature vectors, classes

and model �(p).

2. The transition probabilities are updated by

a
(p+1)
m;n;l =

�i;jH
(p)
m;n;l(i; j)

�i;jL
(p)
l (i; j)

;

where H
(p)
m;n;l(i; j) is the likelihood of being in statem

at block (i�1; j), state n at block (i; j�1), and state
l at block (i; j) given the observed feature vectors,

classes, and model �(p).

In the case of one dimensional HMM as used in speech
recognition, computationally e�cient formulas exist for cal-
culating Lm(k) and Hm;l(k) [6]. For 2-D HMM, however,
the computation of Lm(i; j) and Hm;n;l(i; j) is not feasible,
due to the two dimensional transition probabilities. The
next section will discuss why this is so and how to reduce
the computational complexity.

4. COMPUTATIONAL COMPLEXITY

The EM procedure outlined in the previous section is de-
signed to choose HMM parameters �m, �m and am;n;l that
maximize the likelihood of the observed features (training
data) unconditional on the sequence of states si;j ; (i; j) 2 N

taken by the system, where N = f(i; j); 0 � i < m; 0 � j <
ng denotes the collection of all the blocks in an image. This
is just a sum of the likelihoods of the observation condi-
tioned on each state sequence weighted by the probability
of each state sequence. However, to simplify the calculation
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Figure 2: Blocks on diagonals of an image

of Lm(i; j) and Hm;n;l(i; j), we will assume that the single
most likely state sequence accounts for virtually all the like-
lihood of the observations. Thus we �nd the optimal state
sequence which maximizes P (si;j ;xi;j ; ci;j ; (i; j) 2 N). This
is what is called Viterbi training in [6]. The calculation of
this probability is almost the same as P (si;j ;xi;j ; (i; j) 2
N). If the classes corresponding to si;j , (i; j) 2 N, are the
same as ci;j , the two probabilities are equal. Otherwise,
P (si;j ;xi;j ; ci;j ; (i; j) 2 N) = 0. Hence, we only discuss the
computation of P (si;j ;xi;j ; (i; j) 2 N) in detail here. When
we apply the trained model to classify images, the maxi-
mization of P (si;j ;xi;j ; (i; j) 2 N) is equivalent to maxi-
mizing the posterior probability of the combination of states
given the feature vectors.

According to the 2-D HMM assumptions we made, we
can calculate P (si;j ;xi;j ; (i; j) 2 N) by an e�cient formula
as below.

P (si;j ;xi;j ; (i; j) 2 N) = P (si;j ; (i; j) 2 N) �

P (xi;j ; (i; j) 2 N j si;j ; (i; j) 2 N)

= P (si;j ; (i; j) 2 N) �
Y

(i;j)2N

P (xi;j j si;j)

The probability of a state sequence of the image can be
calculated by:

P (si;j ; (i; j) 2 N) = P (T0) � P (T1jT0) �

P (T2jT1) � � �P (Tm+n�2jTm+n�3) ;

where Ti denotes the sequence of states for blocks lying on
diagonal i, i.e., (si;0; si�1;1; � � � ; s0;i), as shown in Fig. 2.

We can see that Ti serves as an \isolating" element
in the expansion of P (si;j ; (i; j) 2 N) because of the 2-D
Markovian property of our model. Thus the Viterbi al-
gorithm can be straightforwardly applied to �nd the com-
bination of states which maximizes the probability. The
di�erence from the normal Viterbi algorithm is that the
number of possible sequences of states at every position in
the Viterbi transition diagram increases exponentially with
the increase of blocks in Ti. If there are M states, the
amount of computation and memory are both in the order
of Mk, where k is the number of blocks in Ti. Fig. 3 shows
an example. Hence, we refer to this version of the Viterbi
algorithm as the 2-D Viterbi algorithm.

To reduce computation, at every position of the Viterbi
transition diagram, the algorithm only uses N out of all
the Mk sequences of states, shown in Fig. 4. The paths are
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Figure 3: The 2-D Viterbi algorithm

Simplified

����

��
��
��
��

����

��
��
��
��

��
��
��
��

��
��
��
��

position

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��1

2 4

5

3

at every position: 3
Number of nodes constrained�� ����

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

2-D  viterbi  state  transition

1

2

3

4

5

State
Sequences

Figure 4: The computation reduced Viterbi algorithm

constrained to pass one of these N nodes. To choose the N
sequences of states, the algorithm separates the blocks in
the diagonal from the other blocks by ignoring their statis-
tical dependency. Consequently, the posterior probability
of a sequence of states on the diagonal is evaluated as a
product of the posterior probability of every block. Then,
the N sequences with the largest posterior probabilities are
chosen as the N nodes allowed in the Viterbi transition di-
agram. The implicit assumption for doing this is that the
optimal state sequence (the node in the optimal path of the
Viterbi transition diagram) yields high likelihood when the
blocks are treated independently. We also expect that when
the optimal state sequence is not among the N nodes, the
chosen suboptimal state sequence coincides with the opti-
mal sequence at most of the blocks. A fast algorithm is
developed for choosing such N sequences of states. We do
not need to calculate the posterior probabilities of all the
Mk sequences in order to choose the largest N from them.

After the model is trained, to classify an image, we use
the fast version of the 2-D Viterbi algorithm to �nd the col-
lection of states with nearly maximum posterior probability
given the feature vectors. Once the states are determined,
the classes of the image can be obtained by a simple map-
ping from the states.



5. RESULTS

The �rst application of our algorithm is the segmentation of
man-made and natural regions of aerial images. We divide
the images into 4 � 4 blocks and use the DCT coe�cients
or the averages over some of them as features. We compare
the 2-D HMM result with that obtained by CART [1]. The
basic idea of CART is to partition a feature space by a tree
structure and assign a class to every cell of the partition.
Feature vectors landing in a cell are classi�ed as the class
of the cell. Using CART, we obtain error rate of 21:12%.
However, the 2-D HMM algorithm achieves error rate of
14:68%.

We also applied our algorithm to the text and photo-
graph segmentation of document images. By pictures, we
mean continuous-tone images such as photographs. By text,
we mean normal text, tables and graphs [10]. The features
we use are described in detail in [10]. The original image
and the manually classi�ed image are in the upper panel of
Fig. 5. The classi�cation results of both CART and the 2-D
HMM algorithm are shown in the lower panel of Fig. 5. We
can see that the result using HMM is much cleaner than the
result using CART, especially in the picture regions. This is
expected since the classi�cation based on HMM takes con-
text into consideration. As a result, some smooth blocks in
the picture regions, which locally resemble text blocks can
be correctly identi�ed as picture.

Figure 5: Comparison of the classi�cation results of CART
and 2-D HMM. Upper: an image and its hand labeled
classes (gold standard). Lower left: CART classi�cation
result. Lower right: 2-D HMM classi�cation result. White:
photograph, Gray: text.

For the 2-D HMM algorithm, in both applications, we
assign 4 states to each of the two classes. Simulation shows
that models with around 4 states per class give very similar
results.

6. CONCLUSIONS

We propose a two dimensional hidden Markov model for
image classi�cation. The two dimensional model provides a
structured way to use context information in classi�cation.
As the model is two dimensional, computational complex-
ity is an important issue. We describe fast algorithms to
e�ciently estimate the model and to perform classi�cation
based on the model. The application of the algorithm to
several problems shows better performance than that of ex-
isting algorithms.
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