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Abstract

In this paper we propose a new adaptive algorithm designed
to track system presented by a �lter that has markovian
time evolution. As the Non Stationary LMS (NSLMS) al-
gorithm [1], the Non Stationary RLS (NSRLS) algorithm
performs better than the LMS and is able to identify the
unknown order and parameters of the markov model. How-
ever in the case of the NSRLS algorithm, the convergence
speed of the markovian parameter is very high compared
to that of the NSLMS algorithm. Moreover, the NSRLS
algorithm has a better tracking capacity than the NSLMS,
especially when the �lter poles that characterize time vari-
ations of the channel are close to the unit circle.

1 Introduction

Basically the LMS algorithm is designed to recursively esti-
mate the value of a �xed unknown �lter. However, in a non
stationary context this algorithm has interesting tracking
capacity. This steady state property has been extensively
analyzed in the literature for random walk variations (see
for example [2]).
In fact, the adaptive identi�cation o�ered by the LMS is
blind in regard to the nature of the time evolution model
of the channel.
In order to guarantee better results than those realized by
the classical LMS, we proposed respectively in [1] and [3]
the Non Stationary LMS algorithm (NSLMS), and the Fi-
nite Memory NSLMS (FM-NSLMS) algorithm. They are
designed for a markovian non stationary context. The
NSLMS and the FM-NSLMS can identify the markovian
time evolution of the real �lter, encountered in transmis-
sion systems.
The memorization capabilities built into the FM-NSLMS
algorithm, enhances its performances in some particular
situations. For instance, in the case where the �lter poles
that characterize time variations of the channel are close to
unit circle.

The major inconvenience of these algorithms is the lower
convergence speed of the adaptive markovian parameters
to their real values. Hence, they can not be used in some
particular applications. For instance, in the case of radio-

mobile channel equalization.
To overcome this important problem, we propose the
NSRLS algorithm witch is based on the theory of the RLS
algorithm known for its good convergence proprieties.
This algorithm is superior to the NSLMS algorithm. In-
deed, it presents a better tracking capacity than the
NSLMS. In addition, the convergence speed of the adap-
tive markovian parameter is much higher.

Contrarily to the Kalman approaches, the proposed algo-
rithm does not require a prior knowledge of the non sta-
tionarity structure and the unknown statistics of the obser-
vation noise and the �lter noise ([4], [5]).

The paper is organized as follows. In section 2, we present
the adaptive problem and some background on the NSLMS.
Section 3 describes the design of the NSRLS. In section 4,
we study the performance of the proposed algorithm and
compare it to the NSLMS.

2 Background: NSLMS algo-

rithm andmarkovian non sta-

tionary context

2.1 Non stationary context

Here, we are interested in the adaptive identi�cation of
markovian time-varying channel. The classical formulation
of such �ltering problem is depicted in Figure (1). The
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Figure 1: Adaptive identi�cation of time-varying chan-
nel
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noisy input/output equation of the channel is,

yk = FT
k Xk + nk (1)

where, Xk = (xk; xk�1; � � � ; xk�N+1)T is the known station-
ary input vector and nk is an unknown i.i.d. observation
noise. The �lter parameter vector is assumed to be P -order
markov time-varying,

Fk =

PX
i=1

aiFk�i +
k (2)

where the (ai)i=1;P ensure the stability of the channel, and

k called non stationary noise, is an unknown zero�mean,
i.i.d. process independent of fXkg and fnkg.

This general model represents di�erent types of non sta-
tionarity such as variations of mobile transmission channels
or underwater acoustic channels.

The evolution of the parameter vector Hk of the adaptive
�lter is governed by the estimate error, ek = yk �HT

k Xk,
in order to minimize a criterion, such as the mean square
error E(e2k), for the LMS.
The tracking capacity of the adaptive algorithm is mea-
sured by the normalized
misadjustement, M = lim

k!1
(E(e2k)� Pn)=Pn, where Pn is

the power of nk.
It is important to note that the LMS algorithm is not
designed to track time variations of a channel whereas
both the NSLMS and the proposed NSRLS are tailored
approaches for tracking stochastic non stationarities.

2.2 The Non Stationary LMS algo-
rithm

The Non Stationary (NSLMS) algorithm is designed in a
way to take into account the prior knowledge of the non
stationarity model, (2). We keep the structure of the clas-
sical LMS, and include the constraints on the nature of the
non stationarity. Without loss of generality, we consider a
�rst order markovian non stationarity,

Fk = aFk�1 +
k (3)

Therefore, the time evolution of Hk) is as follows:

Hk+1 = baHk + �Xkek (4)

where ba is adaptive estimate of the unknown markov model
parameter.
The adaptive estimation of the parameter ba is also made
by minimizing E(e2k). The true gradient of e

2
k is given by,

de2k
dba jba=a(k) = 2

h
ek

�
HT
k�1Xk + badHk�1

dba
�i
ba=a(k) (5)

This complexity is due to the recursive nature of the marko-
vian structure 3.
The classical approximation of the true gradient consid-
ered in the extended LMS ([6]) is used in order to update

recursively the parameter a of the algorithm. Therefore the
NSLMS algorithm is described by,

ek = yk �HT
k�1Xk (6)

ak+1 = ak + �1(H
T
k�2Xk)ek (7)

Hk+1 = ak+1Hk + �Xkek (8)

where �1 > 0 are (small) step sizes that control the adap-
tive identi�cation of a. Even if the step size (�1) > 0 is
large, the convergence of the parameter to its true value
may take a considerable time. An adaptation by the RLS
algorithm, as proposed in this paper, will overcome this
problem.

In [1] [3] we show by a new formulation, the recursive as-
pect of the problem. Such aspect introduces a memory
related to the update of Hk. However, the use of the RLS
algorithm to update Hk, will help to take into account the
recursivity of the problem without introducing some mem-
orization capability as in the case of the FM-NSLMS.

Note that in [3], we exhibit the tracking superiority of both
the NSLMS and the FM-NSLMS over the LMS. However
we pointed out some bias in parameter estimation.

3 Design of the Non Stationary

RLS algorithm

The Non Stationary RLS algorithm is designed in such a
way that takes into account the prior knowledge of the
structure of non stationary (3). As in the NSLMS, we
keep the classical RLS algorithm (with forgetting factor)
described by,

ek+1 = yk+1 �HT
k Xk+1 (9)

Hk+1 = Hk +Gk+1ek+1Xk+1 (10)

Gk+1 =
1

�
Gk

�
IN �

Xk+1X
T
k+1Gk

�+XT
k+1GkXk+1

�
(11)

and we include the constraints on the nature of the non
stationarity as follows:

Hk+1 = baHk +Gk+1ek+1Xk+1

As noted previously, we decide to use the RLS algorithm to
identify the �lter Fk, since the RLS algorithm has better
convergence speed than the LMS algorithm, and gives a
better performance when the �lter is recursive (3).

To accelerate the convergence of the adaptive parameter,
we propose to adjust its time evolution by minimizing the
least square error.

Considering the error given by (6), a classical approxima-

tion value of the true gradient of Jk =
�Pk

i=1
e2i

�
is given

by,

dJk

dba = �2

kX
i=1

�
yi �XT

i (Gi�1ei�1)Xi�2

�
HT
i�2Xi



+2

kX
i=1

ba �HT
i�2Xi

�2
(12)

Therefore, the NSRLS algorithm is described by,

ek = yk �HT
k�1Xk (13)

mk+1 = mk +
�
yk+1 � �ek�1X

T
k�1Xk+1

�
HT
k�1Xk+1

dk+1 = dk +
�
HT
k�1Xk+1

�2
ak+1 =

mk+1

dk+1
(14)

Hk+1 = ak+1Hk +Gk+1ek+1Xk+1 (15)

Gk+1 =
1

�
Gk

�
IN �

Xk+1X
T
k+1Gk

�+XT
k+1GkXk+1

�
(16)

These equations can be easily generalized to a P order
markovian non stationarity. It is important to notice that
for the NSRLS, we must optimize only the forgetting factor
�; while for the NSLMS, we have to optimize the two step
sizes, � and �1.

4 Steady state performance :

Superiority of the NSRLS

over NSLMS

The performance analyses of the NSRLS are conducted by
simulations. We consider an i.i.d. input with power Px = 1,
and a correlated input generated by a �rst order AR model,

xk = �xk�1 + bk

where bk is an i.i.d. noise and � = 0:8. The power of the
non stationary noise P! is �xed through � = NPxP!

Pn
. For

all the presented results, we use � = 1, and N = 3.

� An i.i.d. input.

In this case, we compare the two algorithms when a = 0:9
and a = 0:5. As expected, the NSRLS has a better tracking
capacity than the NSLMS. This important result is illus-
trated in Figure (2) showing the graph of the misadjuste-
ment M versus the forgetting rate �Px = 1 � �. For the
NSLMS algorithm, the step size �1 = 0:001 for a = 0:9
and a = 0:5. As expected, Figure shows that when a is
closer to 1, the superiority of the NSRLS over the NSLMS
is much more pronounced.

� A correlated input.

As indicated in Figure (3), the NSRLS presents a better
tracking capacity than the NSLMS. The graphs shown in
Figure (3) correspond to a = 0:9, and �1 = 0:001 for the
NSLMS.

5 Convergence of the markov

parameter

Here the focus is on the speed and the quality of conver-
gence of the markov parameter to its true value.

� Convergence speed.

In Figure (4), we show the evolution of the adaptive param-
eter ak versus time (k), when the forgetting rates � and 1��
are �xed to their optimal values. The graphs (1),: : : ,(5) are
respectively relative to the real value of a = 0:9, the NSLMS
(i.i.d. input), the NSRLS (i.i.d. input), the NSLMS (cor-
related input), and the NSRLS (correlated input). This
�gure illustrates two important results:
1- The NSRLS has much higher convergence than the
NSLMS for both i.i.d. input and correlated input.
2- When the input is correlated the convergence speed of
the NSLMS is lower than in the case of i.i.d. input. How-
ever as known the convergence speed of the NSRLS is not
sensitive to the correlation of the input.

� Convergence quality.

The bias E(â) � a is computed for di�erent values of the
forgetting rate �Px = 1 � �. We illustrate some results
in Figure (5) relative to a = 0:9. Simulation shows that
the NSRLS presents better convergence quality for both
i.i.d. and correlated data. In fact the bias does not vary
remarkably when the forgetting rate changes. This result
is very important for the implantation of the algorithm.

6 Conclusion and extension

We present in this paper a new adaptive algorithm
(NSRLS) that takes into account the structure of time
variations of the channel. We show that the NSRLS has
better tracking capacity than the NSLMS. In addition,
the NSRLS has much higher convergence speed than the
NSLMS. Hence, it is an algorithm that can be used in many
real applications such as radio-mobile channel equalization.
We note that the implantation of the NSRLS requires the
generalization, for non stationary markovian context, of
fast RLS version that ensures numerical stability. We note
that the extension of the NSRLS for a P order markovian
non stationarity is described by the following equations.

ek = yk �HT
k�1Xk

mj(k + 1)jj=1;P = mj(k)

+HT
k�jXk+1

�
yk+1 � �ek�1X

T
k�1Xk+1

�
�HT

k�jXk+1

0
@ P̂X

l=1;(l6=j)

al(k)H(k� l)TXk+1

1
A



dj(k + 1)jj=1;P = dj(k) +
�
HT
k�jXk+1

�2
aj(k + 1)jj=1;P =

mj(k+ 1)

dj(k+ 1)

Hk+1 =

P̂X
j=1

aj(k + 1)Hk�j +Gk+1ek+1Xk+1

Gk+1 =
1

�
Gk

�
IN �

Xk+1X
T
k+1Gk

�+XT
k+1GkXk+1

�

The evaluation of this generalized version of the NSRLS
requires some simulation.
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