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ABSTRACT

Subspace methods of pattern recognition form an interest-
ing and popular classi�cation paradigm. The earliest sub-
space method of classi�cation was the CLass Featuring In-
formation Compression (CLAFIC) which associated with
each class a linear subspace. Local subspace classi�cation
methodologies which have enhanced classi�cation power by
associating multiple linear subspaces with each class have
also been investigated. In this paper, we introduce the
Oriented Soft Regional Subspace Classi�er (OS-RSC). The
highlights of this classi�er are (i) Class speci�c subspaces
are formed to speci�cally maximize the average projection
of one class while minimizing that of the rival class (ii) Mul-
tiple manifolds are formed for each class increasing classi�-
cation power (iii) soft sharing of the training patterns again
allows for consistent classi�cation performance. It turns out
that the cost function for forming class speci�c subspaces is
maximized for a subspace of unit dimensionality. The per-
formance of the proposed classi�er is tested on real-world
classi�cation problems.

1. INTRODUCTION

Subspace methods of pattern recognition classify a pat-
tern based on its distance from di�erent vector subspaces,
with the presumption that each class is linearly spanned
by a unique set of basis vectors. Thus the subspace classi-
�er design reduces to the determination of projection sub-
spaces for each class. Di�erent subspace classi�ers vary in
the method of determining the subspaces and the number
of subspaces associated with each class. For example, in
CLAFIC [1] the subspaces are formed from the Principal
Components of training patterns in that class.

Local subspace methods of pattern recognition are based
on a more general data model and allow patterns of the
same class to be associated with more than one sub man-
ifold. Each pattern is thus associated with a distinct sub
manifold depending on its location in the feature space. A
(global) subspace classi�er draws at most quadratic deci-
sion boundaries and thus the local subspace classi�er forms
piecewise quadratic decision boundaries and has enhanced
classi�cation ability. The Regional Subspace Classi�er (RSC)
[2] (see also [3]) and its soft version the S-RSC [4] were pro-
posed by us earlier based on local sub manifolding of sub-
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space classi�ers. The S-RSC also included a mechanism for
soft sharing of the training patterns between multiple sub
manifolds. An approach to introduce locality by combin-
ing Nearest Neighbor technique with subspace methodology
has also been proposed [5]. In an e�ort to improve CLAFIC
the mean square (representational) error criterion can be re-
placed by error criterion which directly aid in classi�cation.
Learning subspace methods that directly reduce the num-
ber of misclassi�cations on the training set have also been
proposed ([1]). The Adaptive Subspace SOM [6], performs
unsupervised subspace classi�cation, by allowing multiple
units (clusters) to tune to input features and partition the
input space.

In this paper, we propose a new subspace classi�cation
paradigm called the OS-RSC. In this, each class subspace
is formed by an Oriented Principal Component Analysis
(OPCA), such that the ratio of the average projection of
patterns from own to rival class is maximized. The pro-
posed OS-RSC thus generates subspaces that directly aid
classi�cation (as opposed to PCA based methods which use
faithful representation as an indirect approach for classi�-
cation). Also training patterns are allowed to be shared
softly between multiple sub manifolds. Further, training
patterns that show greater memberships to a sub manifold
are allowed to inuence the projection matrices for that sub
manifold to a larger extent.

The rest of the paper has been organized as follows. In
Section 2 we review some background material on CLAFIC
and OPCA. We show that the OPCA based cost function
is maximized (in general) for a subspace of dimensionality
one. Section 3 outlines how we can modify the CLAFIC
to bring about the improvements we suggest. An algorithm
for the OS-RSC design is developed in Section 4. In Section
5 we present simulation results and we conclude the paper
with a discussion in Section 6.

2. BACKGROUND

2.1. CLAFIC

Let the feature vectors be represented by x 2 Rn or x =
[x1 x2 : : : xn]

T and come from K classes !(1); : : : ; !(K).

Each class !(i) is represented by a p(i) dimensional sub-
space L(i) and the goal in CLAFIC is to maximize the av-
erage projection of the vectors of a given class !(i) on its



own subspace L(i). Thus we seek to1:

J " =

KX

i=1

E[xTP (i)x j x 2 !(i)] (1)

by �nding a set of orthonormal basis vectors fu
(1)
i ; : : : ; u

(p(i))
i g

and thus a unique projection matrix for the subspace L(i)

is computed as P (i) =
Pp(i)

j=1
u
(j)
i u

(j)
i

T
. Then for any given

input vector the classi�cation rule is

Classify x 2 !(i) if xTP (i)x > xTP (j)x 8 j 6= i,

The basis vectors for the ith class subspace of CLAFIC can
be shown to be (see for e.g. [1]) the eigenvectors correspond-

ing to the p(i) largest eigenvalues of the class correlation
matrix given by

Q(i) = E[xxT jx 2 !(i)] (2)

2.2. ORIENTED PCA

Let fxg and fvg both be stationary stochastic vector pro-
cesses in Rn (x and v could represent signal/noise or in
a classi�cation setting signals from two classes). In ori-
ented principal component analysis [7] the goal is to �nd
the subspace L with an associated matrix P = UUT (U =
[u1 : : : um]) such that

JOPC " =
E[xTPx]

E[vTPv]
=

trfUTRxUg

trfUTRvUg
=

Pm

i=1
uTi RxuiPm

i=1
uTi Rvui

(3)

where Rx = E[xxT ] and Rv = E[vvT ]. The solutions to
the above equation are called the oriented principal com-
ponents. The directions ui that achieve the above maxima
are obtained by di�erentiating (3) wrt ui and solving by
setting to zero. Along ui's, x has maximum variance sub-
ject to the fact that v has minimum variance (i.e. maximum
signal-to-signal ratio). The ui's are the principal general-
ized eigenvectors (g.e.vector) of the symmetric generalized
eigenvalue (g.e.value) problem

Rxui = �iRvui (4)

If Rv is invertible then the above can be rewritten as a
normal eigenvalue problem R�1

v Rxui = �iui. Thus the di-
rection ui is steered by the distribution of v. The direc-
tions ui corresponding to g.e.values �i and are the prin-
cipal g.e.vectors and each oriented eigenvector is an ex-
tremal direction subject to the constraint that it is Rx

and Rv orthogonal to all the previous g.e.vectors i.e. Rx �
orthogonality : uTi Rxuj = 0 8 j < i and Rv�orthogonality :
uTi Rvuj = 0 8 j < i. To show (see also [8]) that
the maximum value of JOPC is �1 (largest g.e.value), sub-
stituting (4) into (3) we have, JOPC =

Pm

i=1
�i�i where

�1 � �2 � : : : � �m and �i = uTi Rvui=
Pm

i=1 u
T
i Rvui,

which restricts
Pm

i=1
�i = 1. Thus obviously the maximum

JOPC of �1 is obtained (for unique g.e.values) setting �1 = 1
and the other �i's to zeros. In other words, the maximizing
subspace for JOPC is of unit dimensionality (m = 1). If
g.e.values are degenerate (i.e. repeated eigenvalues) then
m > 1 can be used but maximal JOPC is still �1 and no
additional advantage is derived.

1
J " (J #) would imply we seek to maximize (minimize) the

cost function J

3. ORIENTED SOFT REGIONAL SUBSPACE

CLASSIFIERS

In CLAFIC the projection directions for each class are formed
from PC's of the training patterns from a speci�c class.
However, common sense dictates that that it might be more
bene�cial to take into account patterns from other classes
also while �nding the projection matrix for a given class.
Making use of the OPCA discussed in the previous sec-
tion, the Oriented Principal Component based Soft Re-
gional Subspace Classi�er (OS-RSC) is developed.

The overall cost function for the oriented subspace clas-
si�cation can be given for the two output class case as,

J " =

LX

c=1

2X

i=1;j 6=i

E[�c(x)(x� rc)
TP

(i)
c (x� rc) j x 2 !(i)]

E[�c(x)(x� rc)TP
(i)
c (x� rc) j x 2 !(j)]

(5)
Thus in the above cost function the objective is to maximize
the ratio of the average projection of a class of vectors on
its own class projection matrix to the expected projection
of that of the other class. Allowing patterns to be shared
in a soft-fashion between the L clusters through �c(x), the
above equation can now be rewritten as,

J " =

LX

c=1

2X

i=1;i6=j

trfUc
(i)TQ

(i)
x�rc

Uc
(i)g

trfUc(i)TQ
(j)
x�rc

Uc
(i)g

(6)

where Q(i)
x�rc

= E[�c(x)(x� rc)
T (x� rc) j x 2 !(i)] and

the basis vectors each class-cluster are given by an OPCA,

Q
(i)
x�rc

uc
(i) = �Q

(j)
x�rc

uc
(i) (7)

Classi�cation rule is x 2 !(i) if (x � rc)
TP

(i)
c (x� rc) >

(x� rc0 )
TP

(j)
c0

(x� rc0 ) 8 j 6= i; c; c0 2 f1; 2; :::Lg

4. ALGORITHM FOR OS-RSC DESIGN

Let X = f(x1; y1); (x2; y2); : : : ; (xN ; yN )g represent the N
training patterns and their associated class labels, where
xj 2 Rn and yj 2 f1; 2g. Then it is required to come
up with the following (i) the cluster associations of each
of the training vectors with the L clusters, (ii) the cluster

centers rc and (iii) the own space projection matrix P
(i)
c

corresponding to all classes and clusters such that J is max-
imized. Adapting the generalized Lloyd's Algorithm [9] for

VQ to OS-RSC (i.e. to iteratively re�ne �, P (i)
c and rc to

maximize J) the following algorithm is obtained,

1. Initialize the L cluster centers rc to L randomly cho-
sen patterns from the training set and initialize the
cluster associations by

�i(x) =
ed(x;ri)PL

c=1
ed(x;rc )

(8)

where d(x; rc) = (x � rc)
TP

(i)
c (x � rc) for x 2 !(i),

and  is a constant (which controls the membership

degree). However since the P (i)
c matrices are not ini-

tialized just the Euclidean distance of each training



pattern from the cluster centers could be used in (8)
for initialization. Use the soft memberships to initial-
ize the projection matrices.

2. The current cluster memberships are available and
each of the cluster centers rc are to be updated. The
total error corresponding to each cluster C(c) can be
expressed as only the inner summation of (5) and that
is to be maximized by proper update of rc's. Finding
the partial wrt rc and solving,

rc = f(D1�1 �N1�2)D
2
2Pc

(1) + (D2�2 �N2�1)

D2
1Pc

(2)g
�1
f(D1D

2
2Pc

(1) �N2D
2
1Pc

(2))(�x)1

+(D2
1D2Pc

(2) �N1D
2
2Pc

(1))(�x)2g

where

Ni = E[�c(x)(x� rc)
TPc

(i)(x� rc) j x 2 !(i)]

Di = E[�c(x)(x� rc)
TPc

(i)(x� rc) j x 62 !(i)]

and

(�x)i = E[�c(x)x j x 2 !(i)];�i = E[�c(x) j x 2 !(i)]

and [�]� is the generalized inverse and is equal to the
normal inverse if the latter exists.

3. The class cluster covariance matrix Q(i)
c is calculated

and projection matrices P (i)
c are updated

4. The cluster associations �c of individual training pat-
terns are again updated using (8)

5. Steps 2-4 are iterated until the cluster centers stabi-
lize or until a maximum number of iterations.

5. SIMULATIONS

The e�cacy of the OS-RSC was evaluated on following real
world data sets. Each dataset was divided into three parts
- training, testing and validation. For each classi�cation
problem, 10 independent runs were simulated based on dif-
ferent initializations of the cluster centers, for varying num-
ber of clusters (L). The L giving the best performance on
the validation dataset was retained and was then used with
the testing data (over 10 runs) to provide the average ac-
curacies.

Sonar Data: This is a two class identi�cation problem of
undersea targets (rock or cylinder) [10]. The inputs are in
R60. There are 111 cylinder patterns and 97 rock patterns.
104 training points, and 52 patterns each for validation and
testing. The Sonar data was projected into R10 keeping the
10 most signi�cant directions after PCA. This was necessary
as the performance was unsatisfactory in R60.

Lymphoma and Lymphoma1 Data: Lymphoma (Lym-
phoma1) is a two class - malignant or benign - identi�ca-
tion problem. The inputs are in R9 (R10) and represent
textural, tonal and boundary features extracted from seg-
mented cytological preparations of lymph node cells [11].
There are a total of 439 patterns, 145 benign cases and 234
malignant cases. One-�fth of each class was divided equally
for validation and testing.

Diabetes Data: This is a two class (Diabetes present or
absent) identi�cation problem of diabetes in Pima Indians
[12]. The inputs are in R8 and are personal data and result
of medical examinations. 500 patterns are no diabetes class
and 268 patterns are for diabetes class, making it a total
of 768 patterns. 384 training samples, and 192 each for
validation and testing.

Echocardiogram Data: This is a two class dataset (Pa-
tient survives for more than one year or not). There are a
total of 132 patterns and all 11 inputs are numeric-valued.
Of the eleven, two inputs are binary valued [13]. 108 pat-
terns are 'dead' class 24 are 'alive' class. 66 training sam-
ples, and 33 each for validation and testing

6. DISCUSSION AND CONCLUSION

Table 1 summarizes the performance of OS-RSC on the
datasets considered. Table 2 puts the performance of OS-
RSC vis-a-vis best case performance reported elsewhere in
literature in perspective. Figure 1 gives the plot of average
accuracies and standard deviations over varying number of
clusters.

Since an iterative algorithm was employed for the min-
imization of the cost function a convergence criterion could
be speci�ed. In all of our simulations we found it con-
venient to run the iteration for a �xed number of times
(30). The changes in the cluster centers usually stabilized
by then. The standard deviations in the accuracies obtained
are high (see Table 1). This was probably due to the fact
that the GLA that was applied for the minimization proce-
dure did not converge to the global minima. Future e�ort
will be directed towards applying global optimization (GA,
SA) strategies.

The softness in the OS-RSC is distinct from soft com-
petitive Vector Quantization algorithms in which member-
ships start out to be soft and then are annealed to become
crisp. In OS-RSC the memberships determine how much
each of the training patterns inuence the projection sub-
spaces and even the �nal memberships could remain soft.
Also, although RSC, S-RSC and OS-RSC may be looked
upon as creating a set of invariant feature banks they dif-
fer from ASSOM in that no speci�c attempt is made to
introduce spatial ordering in the evolution of the clusters.

By virtue of forming subspaces that explicitly aid clas-
si�cation OS-RSC outperforms RSC, S-RSC and EALSM
(which are similar in spirit to the OS-RSC as they involve
variations of local subspace classi�cation).

It is in general di�cult if not impossible to build a clas-
si�er that is superior to all possible classi�cation paradigms
on all possible datasets. From Table 2 it can be observed
that although the proposed methodology performs well across
a wide range of datasets there do exist other classi�ers that
perform better. However,

(i) Across 5 di�erent datasets the OS-RSC gives
reasonably competitive performance
(ii) Being a subspace classi�er it is simple and
fast in operation
(iii) It has less tunable parameters and the di-
mensionality of the best subspace is 1

In fact other than determining the number of clusters, the
only other 'tunable' parameter is  (the softness factor).



It was found that the results were not overly sensitive to a
range of  (chosen so that softmax function does not always
saturate). Having said that, it is felt that there is a need and
scope for improving the performance of the proposed classi-
�er. Inclusion of higher order combinations of the inputs is
to be pursued as a means to that end. A preliminary inves-
tigation along these lines suggests strongly that even for a
simple linear classi�cation strategy inclusion of higher order
combinations improve classi�cation performance. Ongoing
work is also focused on developing a bias-variance frame-
work for the general case of subspace classi�ers.

Data Set % Accuracy � # Clusters
SONAR 84.2 2.8 2
LYMPHOMA 74.0 4.8 8
LYMPHOMA1 77.3 2.2 5
DIABETES1 73.7 1.0 4
ECHO 87.3 5.4 2

Table 1: Results obtained with the OS-RSC.

Data Set Classi�er % Accuracy Ref

EALSM 92.0z [3]
MLP 90.4 [3]

SONAR RSC 93.1 [2]
S-RSC 92.3 [4]
OS-RSC 84.2 y
MLP 83.6 [11]

LYMPHOMA RSC 66.5 [2]
S-RSC 76.3 [4]
OS-RSC 74.0 y
MLP 81.7 [11]

LYMPHOMA1 RSC 69.8 y
S-RSC 66.2 y
OS-RSC 77.3 y
CW 77.3 [14]
k-NN 74.2 [14]

DIABETES1 MLP 76.4 [12]
RSC 69.0 y
S-RSC 72.8 y
OS-RSC 73.7 y
RSC 70.3 y

ECHO S-RSC 82.4 y
OS-RSC 87.3 y

Table 2: Comparative performance of di�erent classi�ers
(zBestCase; other numbers are average accuracies) for a
qualitative assessment of the performance of di�erent clas-
si�ers. In some cases the conditions under which the perfor-
mance of other classi�ers are obtained are not fully known,
a direct comparison of the numbers is less meaningful. (y
These simulations were run by us for this paper and are not
reported elsewhere)
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