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ABSTRACT

The main goal behind coordinate transformation (warping)
of a Linear Time Invariant (LTI) system is to represent its
signals in terms of new basis functions that better suit the
application in hand. Unitary operators simplify the analy-
sis considerably; therefore, they are used to derive the rela-
tions between variables in the original and warped domains.
These relations show that an LTI system can be warped by
processing its input signals with a unitary warping transfor-
mation. An efficient implementation of this warping trans-
formation, that is based on a nonuniform sampling theo-
rem, is given; which allows applying the warping principle
in real-time applications. As an example of exploiting this
technique, it is shown that sampling an audio signal at ex-
ponentially spaced moments changes the underlying coor-
dinates of its signal processing system to suit those of the
human auditory system.

1. INTRODUCTION

The concept of coordinate transformation, better known as
warping, has been used extensively in many applications
such as transform coding, adaptive filters and dynamic time-
warping of speech signals. Recently, Baraniuk and Jones
[1] have extended its application domain to joint signal rep-
resentations of arbitrary variables including time-frequency
and time-scale distributions. The main goal behind coor-
dinate transformation is to represent signals and systems
in terms of new basis functions that better suit the appli-
cation in hand. A good example may be found in audio
signal processing. It is known that the human auditory sys-
tem performs nonuniform spectral analysis on sound waves
collected by the pinnae. Therefore, audio applications that
interact with the auditory system should have similar inter-
nal representations of signals. It is shown in Section 5 that
warping the coordinates of the signal processing system to
match those of the human auditory system is sufficient to

produce similar nonuniform analysis. But first, the theory
behind coordinate warping is presented. In Section 2, the
required basics of unitary operators are introduced. In Sec-
tion 3, the unitary equivalence principle is used to derive
the relations between variables and operators in time and
frequency domains and their warped counterparts. An ef-
ficient implementation of the coordinate warping transfor-
mation using a nonuniform sampling theorem is derived in
Section 4. Finally, Section 6 sums up the important mes-
sages conveyed by the paper.

Throughout the paper, lower case letters are used to rep-
resent signals in time domain while upper case letters repre-
sent signals in frequency domain. The symbolIF is used to
denote the Fourier operator. All signals are considered to be
elements of the Hilbert space of square-integrable functions
L2(IR), which has inner producths; hi =

R
IR
s(�)h�(�)d�

for s; h 2 L2(IR) and normkhk2= hh; hi, where(�)� de-
notes the complex conjugate. Operators on the Hilbert space
are expressed using boldface capital letters. The notation
(U s)(x) is used to denote processing the signals by the
operatorU and evaluating the result atx.

2. UNITARY OPERATORS

A unitary operatorU is a linear transformation that maps
the Hilbert space into itself. Unitary operators preserve en-
ergy and inner products;kUsk2=ksk2 and hUs;Uhi =
hs; hi. As a consequence, a unitary operator maps a set of
orthonormal bases inL2(IR) into another set of orthonormal
bases inL2(IR). The class of unitary operators that is of in-
terest to us in this paper is the class of unitary coordinate
transformations (axis warping). A subclass of such unitary
coordinate transformations onL2(IR) is given by [1]

(Us)(x) =
p
j _(x)j s((x)) (1)

where(x) is a smooth, monotonic and one-to-one func-
tion, and_(x) = d(x)=dx. The weighting term(

p
j _(x) j)



preserves the signal energy, and therefore ensures that the
transformation is unitary. In Section 4, we will show that
the transformation (1) can be implemented efficiently us-
ing nonuniform sampling of the signals. To reach this
point, we need to define two other classes of unitary op-
erators. The first is the class of parametrized unitary oper-
ators representing physical quantities such as time and fre-
quency. In this representation, a variablea is associated
with the operatorAa parametrized bya. The second is
the class of unitary signal transformations acting as density
functions for physical quantities, such as the Fourier trans-
formation. The latter class can be obtained by projecting a
signals onto the eigenfunctions of the operatorAa. The
eigenfunctions and eigenvalues of the parameterized uni-
tary operatorAa can be found by solving the eigenequation
(Aa e

A

k )(x) = �Aa;k e
A

k (x). This yields the eigenfunctions
feAk (x); k 2IRg and the eigenvaluesf�Aa;k; k 2IRga. The
expansion of a signals onto these eigenfunctions (referred
to as theA-Fourier transformIFA in [1]) is given by

S(k) = (IFA s)(k) = hs; eAk i =

Z
IR

s(x) eA
�

k dx (2)

and the inverse transformation is given by

s(x) = (IF�1
A

S)(x) = hS; eA
�

k i =

Z
IR

S(k) eAk dk (3)

The time-shift operator corresponding to the time vari-
able and the frequency-shift operator corresponding to the
frequency variable together with their corresponding eigen-
functions are summarized in Table 1. The transformation
IFT= hs; eTk i can be identified as the usual Fourier trans-
form IF which is invariant to time shifts up to a phase factor
j(IF T�s)(k)j = j(IF s)(k)j, covariant to frequency shifts
(IF F�s)(k) = (IF s)(k + �) and measures the frequency
contents in the signals(x). The transformationIFF= hs; eFk i
corresponds to the mirror transform(IFF s)(x) = s(�x)
that is invariant to frequency shifts, covariant to time shifts
and measures time contents in the signals(x).

Operator Definition in t-domain Eigenfunctions

Time shift (T� s)(x) � s(x� �) e
T

k (x) = ej2�kx

Freq. shift (F� s)(x) � ej2��x s(x) eFk (x) = �(x+ k)

Table 1:Time and frequency operators and their eigenfunctions.

3. UNITARY EQUIVALENCE AS A COORDINATE
TRANSFORMATION

It is a well known property of the Fourier transform that a
time signals(t) can be modulated (frequency shifted) by
either multiplying it byej2��t or by translating its Fourier
transform:F� =IF

�1
T� IF. SimilarlyT� =IF

�1
F� IF

PU U
-1s(t) y(t)y(t)~

Us PUs U PUs

s(t)~

-1

Figure 1:Warped linear time invariant system.

expresses time shift, which is equivalent to multiplying(IF
s) by the phase factorej2��k. This principle of operator
equivalence modulo a unitary transformation can be gener-
alized to any unitary operator; which leads to theunitary
equivalenceprinciple [1]. This principle states that two op-
eratorseA andA are unitary equivalent ifeA = U

�1
AU,

with U a unitary transformation. Solving the eigenequa-
tion of eA yields the new eigenfunctionseeAk = U

�1
e
A

k ,
while the two operators have the same eigenvalues. And theeA-Fourier transform is given byIF

eA
=IFA U. SinceU is

unitary, it preserves the inner product onL2(IR) such that
heA; eBi = hA;Bi for any two operatorsA andB.

Application of the unitary equivalence principle to the
time and frequency operatorsT andF results in two new
operatorseT and eF that correspond to two new variables~t
and ~f , respectively:

eT� = U�1T�U
eF� = U�1F�U (4)

When the unitary transformation is of the warping type given
by (1), we will refer to~t and ~f as warped-time and warped-
frequency, respectively. From the above, theeT-Fourier trans-
form IF

eT
is given byIF

eT
=IFT U =IF U and can be shown

to be invariant toeT and covariant toeF (while IF is invariant
toT and covariant toF). Similarly, theeF-Fourier transform
is given byIF

eF
=IFIF U =MU; whereM is the mirror op-

erator(Ms)(t) = s(�t). Similarly, IF
eF

can be shown to be

invariant toeF and covariant toeT.
The underlying coordinates of an LTI systemP can be

changed by preprocessing its input signal with the unitary
transformationU as shown in Fig. 1. This preprocessing
transforms the input signals 7�! Us and maps the opera-
torsT 7�! eT andF 7�! eF; corresponding to the warped-
time and warped-frequency variables as discussed above.
The system outputy(~t) = (PUs)(t) can be considered
as the response of the warped-LTI (WLTI) system given by
PU. Since an LTI is characterized by its covariance to time
shifts, the original systemP is covariant toT: (PT�s)(t) =
(Ps)(t � �). The WLTI systemPU however, is covariant
by translation not toT but toeT: (PUeT�s)(~t) = (PUs)(~t�
�). Therefore, by carefully choosing the unitary preprocess-
ing operatorU, it is possible to “rotate” the system coordi-
nates to better suit prespecified requirements on the result-
ing WLTI system. In many cases, the output of the LTI
system has to be presented with respect to the original coor-
dinates, and the inverse warpingU�1 in Fig. 1 is needed.
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Figure 2:Relations between time domain, frequency domain and
their warped counterparts.

The relations between time domain, frequency domain
and their warped counterparts are summarized in Fig. 2. In
this figure, an arrow with an operatorX on top indicates
the required transformation to move from one domain to
the other in the arrow direction. The transformation in the
opposite direction is performed byX�1. Note that the uni-
tary transformationU is defined to be the same for time and
frequency signals, thereforeIF U = U IF.

4. NONUNIFORM SAMPLING AS COORDINATE
TRANSFORMATION

In real-time digital signal processing (DSP) systems, pro-
cessing speed is of high importance. Therefore, an efficient
implementation of the unitary warping transformation (1) is
required to put the warping principle into application. In
general, calculating the weighting function

p
j _(t)j forms

no difficulties since must be chosen to be a smooth, mono-
tonic and one-to-one function. In most cases, this can be
done off-line and the result stored in a lookup table to be
accessed during real-time processing. Therefore, in the rest
of this section, we will consider only the second factor of
the right hand side of (1).

For most real-time DSP systems, input and output sig-
nals are continuous-time signals. Analog-to-digital convert-
ers (ADC) are used to sample the input signals, while digital-
to-analog converters (DAC) are used to transform the out-
put signals back to their continuous-time form. Considering
that the sampling process is performed after warping, the
warped signal(Us)[nT ] (see Fig. 1) can be expressed as

(Us)[nT ] =
p
j _[nT ]j s[(nT )] (5)

whereT is the sampling period that is considered to com-
ply with the classical sampling theorem. Equation (5) can
be interpreted as sampling the signals(t) at new sampling
moments given bytn = (nT ), thus producing nonuni-
formly sampled signal. The following theorem shows that
this nonuniformly sampled signal is guaranteed to be free
from aliasing.
Clark’s nonuniform sampling theorem [2]:
Let a functionf(t) be sampled at the sampling moments
t = tn, wheretn is not necessarily a sequence of uniformly
spaced numbers. If a one-to-one continuous mapping�(t)
exists such thatnT = �(tn), and if g(�) = f(��1(�)) is
band limited to!o = �=T , then the functionf(t) can be re-
constructed exactly from its samples using the interpolation
formula

f(t) =

1X
n=�1

f(tn)
sin
�
�
T ((t) � nT )

�
�
�
T ((t) � nT )

� (6)

In the case of the unitary warping transformation (5),
since we started off with a warping function that is smooth,
monotonic and one-to-one, the mapping��1(�) = (�) is
guaranteed to exist. Moreover, sinceU is a unitary trans-
formation, its inverse exists and the inverse warping func-
tion �1(�) = �(�) exists, which proves that the system is
free from aliasing. Therefore, samplings at the moments
tn = (nT ) and multiplying the result by the weighting
factor

p
j _[nT ]j is a valid implementation of the unitary

warping transformation (1). The total complexity required
for warping a signal of time intervalNT seconds is reduced
toN real multiplications that are required for the weighting
factor

p
j _(t)j in (5). In cases when input signals are al-

ready in digital form, the nonuniform sampling can still be
used by using a hardware resampler as described in [3].

5. WARPED AUDIO SIGNAL PROCESSING
SYSTEMS

In this section, the auditory filter bank problem, mentioned
in the introduction, is used as an example to present the de-
sign procedure of WLTI systems. This example also ex-
presses the potential improvement of conventional audio sys-
tems when combined with a preprocessing warping stage.

Consider an LTI systemP that functions as an audio
spectral analyzer. The input signal is first sampled uni-
formly with sampling periodT seconds according to the
classical sampling theorem. Blocks ofN samples are col-
lected, anN -point FFT is calculated and the result is pre-
sented. The output of this system is shown in Fig. 3-b for
N = 64, T = 1=300 seconds and the input signal (shown
in Fig. 3-a) is given bys(t) =

P4
n=1 cos(2�

0:1n
T t)

Since the FFT algorithm calculates equally spaced sam-
ples of the signal’s Fourier transform, this simple analyzer
can be considered as a constant-bandwidth filter bank. On



the contrary, the human auditory system performs constant-
Q “percentage-bandwidth”analysis in most of the audio fre-
quency range. Therefore, the systemP does not present a
true estimate of the signal components as seen by the hu-
man auditory system, and can not accurately resolve known
phenomena such as frequency masking. In order to take
these perception issues into account, we need to convert the
constant-bandwidth filter bank, performed by the above sys-
tem, to a constant-Q filter bank, preferably with as little ex-
tra computation as possible. Several methods exist that can
perform the task, a survey of which can be found in [3]. Un-
fortunately, all of the existing techniques require a great deal
of computation complexity. The warping principle proves
to be very efficient in this case: warping the frequency co-
ordinatef of the above system to(f) = f

0
� af and per-

forming the same FFT on the warped signal is sufficient.
In the above warping function, the variablea 2 IR ; a > 1
controls the bin spacing and bandwidth on the warped fre-
quency coordinate.f

0
2 IR+ is a reference frequency taken

to be the smallest frequency of interest. This maps the fre-
quency sampling points of the FFT fromfk = kF to fk =
f
0
(akF ); wherek is the frequency index andF = 1=NT

is the bin spacing of the ordinary FFT. From Fig. 2, this is
equivalent to consideringP = I and performing a transfor-
mationIF U from time to warped frequency. This allows us
to use the nonuniform sampling method to implement the
warping efficiently, which is not possible if we consider a
transformation from frequency to warped frequency. Using
a similar time-warping function and substituting in (5) gives
the required unitary warping transformation

(Us)[nT ] =
q
janT log(a)j s[t

0
anT ] (7)

wheret
0
2IR+ is an arbitrary time reference ont anda2IR

; a>1. This transformation maps functions onL2(IR) onto
functions onL2(IR+). From Fig. 2, it is readily evaluated
that (eT�s)(t) = a��=2s(a��t) which is a dilation oper-
ator, (eF�s)(t) = ej2�� log

a

(t)s(t) corresponding to loga-
rithmic modulation. The Fourier transform in this case is
(IF

eT
S)(f) = c

R1
0

s(t)p
t
ej2�f log

a

(t)dt; wherec =
p

log(a)

which is the Mellin transform known for its constant-Q anal-
ysis.

Since the FFT considers the input signal to be periodic
with a periodN , we only need to warp this time period of
N samples. The output of the WLTI spectral analyzer is
shown in Fig. 3-d, and the nonuniform sampled input signal
in Fig. 3-c fora = e andt

0
= 1. It is clear from this re-

sult that the WLTI system indeed performs spectral decom-
position similar to the auditory system; it produces higher
resolution at low frequencies and lower resolution at high
frequencies.

Finally, it is worth mentioning that althoughN extra
multiplications are consumed every block to realize the warp-
ing, it is compensated by using a more efficient sampling
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Figure 3:Spectral analysis in time and warped-time domains.

mechanism. Note from Fig. 3 that the same number of sam-
plesN = 64 are collected in longer time in case (c) than in
case (a) which leads to less number of blocks per unit time.

6. CONCLUSIONS

It is shown that a Linear Time Invariant (LTI) system can be
readily warped by sampling its input signals nonuniformly.
Nonuniform sampling not only implements the warping uni-
tary transformation efficiently, but also leads to a more ef-
ficient sampling mechanism for many warping functions.
Having such an efficient implementation allows utilizing the
powerful tool of coordinate transformation in real-time sig-
nal processing systems. This technique offers audio appli-
cations a simple way of adjusting their performance to take
the human auditory system behaviour into account.
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