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ABSTRACT

A frame design technique for use with vector selection algorithms,
for example Matching Pursuits (MP), is presented. The design al-
gorithm is iterative and requires a training set of signal vectors.
The algorithm, called Method of Optimal Directions (MOD), is
an improvement of the algorithm presented in [1]. The MOD is
applied to speech and electrocardiogram (ECG) signals, and the
designed frames are tested on signals outside the training sets.
Experiments demonstrate that the approximation capabilities, in
terms of mean squared error (MSE), of the optimized frames are
significantly better than those obtained using frames designed by
the algorithm in [1]. Experiments show typical reduction in MSE
by 20 � 50%.

1. INTRODUCTION

Traditional transform based compression schemes use orthogonal
bases, and the goal is to represent as much signal information with
as few transform coefficients as possible. The optimal transform
for a signal depends on the statistics of the stochastic process that
produced the signal. For a Gaussian process and high resolution
quantization the Karhunen-Lo`eve Transform (KLT) is the optimal
transform. If the process is not Gaussian, or the high resolution
assumption does not hold, the KLT need not be the optimal trans-
form. It is then a nontrivial task to find the optimal transform even
if the statistics are known [2]. In addition to these difficulties the
signal is often non-stationary, and consequently no fixed transform
will be optimal in all signal regions. One way to overcome these
problems is to use a weighted sum of vectors from an overcomplete
set of vectors. For a finite dimensional space, any finite overcom-
plete set of vectors which span the space form aframe[3].

The basic idea when using a frame instead of an orthogonal
transform is that we have more vectors and thus a better chance
of finding a small number of vectors whose linear combination
match the signal vector well. Since a linearly dependent set of
vectors is used, an expansion is no longer unique. In a compression
scheme the goal is to use as few vectors as possible to obtain a good
approximation of each signal vector. Finding the optimal vectors
to use in an approximation is an NP-hard problem and requires
extensive calculation [4].

The use of frames in compression schemes have been given
some attention [3, 5, 6] whereas the problem offrame designin
this context is largely unexplored. We presented an algorithm for
frame design using a training set in [1]. In this paper we present a

significantly improved version of the frame design algorithm, and
we call it the Method of Optimal Directions (MOD).

2. BASES AND FRAMES

If an N -dimensional vector spaceV contains a linearly indepen-
dent setB = fbig of N vectors, thenB is called abasisfor V ,
and it spans the space. Any vector,v, in V can be expanded as
a linear combination of the basis vectors:v =

PN

j=1
�jbj , and

the expansion is unique. If the set of vectors is orthogonal, that is
bi ? bj wheni 6= j, thenB is called anorthogonal basisfor V .

A vector can also be written as a linear combination of an over-
complete set of vectors. If theN -dimensional vector spaceV con-
tains a setF = ffjg of K vectors whereK > N , andF spans
the spaceV , F is an overcomplete set. The vectorsfj are not in-
dependent, andF is not a basis but aframe [7]. Any vector,v,
in the setV can be expanded as a linear combination of the frame
vectors:v =

PK

j=1
�jfj , but because of the linear dependence of

the frame vectors, the expansion is not unique any more.
The termframecovers both a basis and an overcomplete set

of vectors. We use the termframefor a general linearly dependent
set of vectors, mostly overcomplete, which spans the space. Other
terms, like dictionary or codebook have been used for similar sets,
but these terms are often associated with vector quantization or
classification, and we avoid them in this paper.

LetF denote anN �K matrix whereK � N . The columns,
ffjg , j = 1; : : : ; K, constitute a frame. Letxl be a real signal
vector,xl 2 RN , xl can then be represented or approximated as

~xl =
X
j

wl(j)fj ; (1)

wherewl(j) is the coefficient corresponding to vectorfj . In a
good compression scheme, many of thewl(j)’s will be zero. The
corresponding error energy iskrlk2 = kxl � ~xlk

2, wherek � k
denotes the Euclidean norm inRN . For a set ofM signal vectors,
the mean squared error (MSE) can be calculated as

MSE =
1

NM

M�1X
l=0

krlk
2
: (2)

We need to select the frame vectors to be used for approximat-
ing a given signal vectorx. Since finding the optimal solution is
an NP-hard problem, a suboptimal technique is preferable in order



to limit the computational complexity. There exist several differ-
ent vector selection methods dealing with this problem. They can
be divided into sequential (greedy) and parallel vector selection
methods [8]. We use Orthogonal Matching Pursuit (OMP) [9] as
the vector selection algorithm in this paper, but the MOD can also
be used with other vector selection algorithms.

3. METHOD OF OPTIMAL DIRECTIONS (MOD)

The iterative algorithm used to design frames is inspired by the
Generalized Lloyd Algorithm (GLA) used for designing VQ code-
books [10]. The main steps in the GLA are:

1. Find an initial codebookC1 with K vectors in the code-
book, each with dimensionN . Seti = 1.

2. Given the codebook,Ci, perform the Lloyd Iteration to gen-
erate the improved codebookCi+1.

3. If the average distortion forCi+1,

D =

KX
l=1

Z
Rl

d(x; cl)fx(x)dx (3)

d(x;y)
�
= kx� yk2 (4)

has changed by a small enough amount since the last itera-
tion, stop. Otherwise:i = i+ 1, and go to Step 2.

The Lloyd Iteration for empirical data is as follows:

a) Given the codebook,Ci = fclg, partition the training set,T ,
into setsRl using the Nearest Neighbor Condition:

Rl = fx 2 T : d(x; cl) � d(x; cj); all j 6= lg (5)

b) The Centroid for a cellRl is:

cent(Rl) =
1

#Rl

#RlX
k=1

xlk ; (6)

wherexlk are elements inRl, and#Rl is the number of
elements inRl. Compute the centroids for the sets,Rl, to
obtain the new codebook,Ci+1 = fcent(Rl)g.

The GLA is designed for optimizing a codebook for VQ. Part a) in
the Lloyd iteration finds the optimal classification for the training
set using a given codebook. In the context of VQ, classification
corresponds to finding the best vector in the codebook represent-
ing the training vector. This vector is the approximation of the
training vector. Part b) finds a better codebook for that classifica-
tion. It follows that the new codebook is guaranteed to be better
than the previous, and the GLA will eventually find at least a local
optimum.

In the context of frame design, part a) in the Lloyd Iteration in-
volves finding approximations for all the vectors in the training set.
We will not call thisclassificationsince it includes both finding the
frame vectors to be used when approximating a signal vectorand
their associated coefficients. Thus, part a) in the Lloyd Iteration for
frame design is to find anapproximationfor each training vector.

Part b) in the Lloyd iteration is to use the current approxima-
tions to construct a new frame. We can not use the centroids of
the training vectors to compute a new codebook, as in the original
Lloyd iteration, because the approximation of each training vector

includes several vectors and coefficients. We have to construct the
new frame vectors in some other way.

The GLA requires that each new frame performs better, in
terms of MSE, than the previous one using the existing approxi-
mation. In this context existing approximation means the approx-
imation achieved using theadjusted versionof the frame vectors
selected, but with the old coefficients. GLA also requires the frame
to perform better after the new approximation vectors and corre-
sponding coefficients are found using the new frame. Then the
new frame will always be better, or as good as the previous one,
and the algorithm at least guarantees a local optimum. To be able
to guarantee improvement in each iteration, part a) in the Lloyd
iteration would have to be done by complete search for the opti-
mal approximation. This is an NP-hard problem, and a suboptimal
vector selection algorithm has to be used instead. With this ap-
proach there is no guarantee for the frame after an iteration to be
better than the previous frame. Thus the algorithm presented here
is not a GLA, but it is an iterative algorithm inspired by the GLA.
Even though we can not guarantee improvement in each iteration,
experiments show that the algorithm works remarkably well.

When a signal vector is approximated using a frame, the num-
ber of frame vectors to be used in the approximation has to be
chosen. In the frame design algorithm presented here the number
of frame vectors to be used,m, is constant for all training vectors
and iterations. The main steps in of algorithm are as follows:

1. Begin with an initial frameF0 of sizeN �K, and decide
the number of frame vectors to be used in each approxima-
tion,m. Assign counter variablei = 1.

2. Approximate each training vector,xl, using a vector selec-
tion algorithm:

~xl =

KX
j=1

wl(j)fj : (7)

wherewl(j) is the coefficient corresponding to vectorfj ,
and onlym of thewl(j)’s are different from zero.

Find the residuals.

3. Given the approximations and residuals, adjust the frame
vectors) Fi.

4. Find the new approximations, and calculate the new resid-
uals. If (stop-criterion = FALSE)) i = i + 1, go to step
3. Otherwise stop.

The difference in the MOD and the frame design algorithm pre-
sented in [1] is the way that the frame vectors are adjusted. In the
following the attention is focused on step 3 in the algorithm above.

Consider a scheme wherem frame vectors are selected for
approximating each training vector, i.e.xl is approximated as in
Equation 7. The residual is:

rl = xl � ~xl; (8)

The idea is now to adjust all frame vectors in such a manner that
the total MSE, given by

P
l
krlk

2, becomes as small as possible.
Denote by�j the adjustment of frame vectorfj :

~fj = fj + �j ; j = 1; 2 : : : K: (9)

In the following we show how to find the optimal vectors�j ; j =
1; 2; : : : K. Since we find the optimal directions in Equation 9, we



call the design algorithmthe method of optimal directions. The
new residual for a training vectorxl is:

r
0

l = rl �

KX
j=1

wl(j)�j ; (10)

wherewl(j) is the coefficient corresponding to the non adjusted
vector,fj , for the approximation of training vectorxl. Onlym of
thewl(j)’s are different to zero. A reduction of the total MSE over
all training vectors is wanted:X

l

kr0lk
2 �

X
l

krlk
2
: (11)

The resulting MSE after adjusting the frame vectors is investi-
gated: X

l

kr0lk
2 =

X
l

krl �

KX
j=1

wl(j)�jk
2 (12)

=
X
l

(rl �

KX
j=1

wl(j)�j)
T (rl �

KX
j=1

wl(j)�j) (13)

=
X
l

krlk
2 � 2

X
l

KX
j=1

wl(j)�
T
j rl (14)

+
X
l

KX
j=1

KX
k=1

wl(j)wl(k)�
T
j �k: (15)

If Equation 11 is satisfied, then:

KX
j=1

KX
k=1

ajk�
T
j �k � 2

KX
j=1

�
T
j bj � 0 (16)

where

ajk =
X
l

wl(j)wl(k) (17)

bj =
X
l

wl(j)rl: (18)

We want to find the minimum of
P

l
kr0lk

2, and this is equivalent
to finding the minimum of the left side of Equation 16:

@

@�q(p)

 
KX
j=1

KX
k=1

NX
i=1

ajk�j(i)�k(i)� 2

KX
j=1

NX
i=1

�j(i)bj(i)

!
= 0;

(19)
whereq = 1; 2 : : : K, andp = 1; 2 : : : N . After some manipula-
tions we get:

KX
j=1

ajq�j(p)� bq(p) = 0: (20)

This can be written as a matrix equation:

A� = B; (21)

where

A =

2
4 a11 a12 : : :

...
. . .

aK1 aKK

3
5 (22)

B =

2
64

bT1
...
bTK

3
75 (23)

According to Equation 17,A is symmetric. The�matrix contains
the optimal adjustment vectors:

�
T =

�
�1 : : : �K

�
(24)

AssumingA to be full rank, we get:

� = A
�1
B: (25)P

l
kr0lk

2 can not be less than 0, thus we know that the prob-
lem has a minimum solution. Since Equation 25 has only one so-
lution whenA is full rank, this is the minimum solution.

For each iteration, if the frame vectors are adjusted according
to Equations 9 and 25 this gives the optimal improvement in MSE
for the existing vector selection and corresponding coefficients.

We have now focused on point 3 in the algorithm. If an op-
timal vector selection algorithm had been used in point 4 in the
algorithm, the new frame would always be better than the pre-
vious, with respect to MSE. Selection algorithms for frames are
suboptimal, so there is no way to guarantee a better frame when
using a practical selection algorithm, but test results show that this
scheme works remarkably well and produces frames that are well
suited for a given class of input data. In summary, the algorithm
for frame design works as follows:

1. Begin with an initial frameF0, i = 1.

2. A vector selection algorithm is used to find an approxima-
tion for each training vector, and all the residuals are calcu-
lated.

3. All frame vectors,fj , are adjusted according to Equation 9
and Equation 25. The frame vectors are then normalized to
unit length) Fi.

4. A vector selection algorithm is used to find the new approx-
imations and residuals.
If (stop-criterion = FALSE)) i = i+ 1, go to step 3, else
terminate.

Suggested stop-criteria can be: Maximum number of iterations or
almost constant MSE. Due to the lack of guarantee for the new
frame to be better than the previous, the algorithm should allow the
MSE to grow for several iterations without terminating the train-
ing. This can be seen by carefully inspection of the training results
in the next section.

4. EXPERIMENTS AND RESULTS

The MOD is applied to ECG and speech signals. The ECG sig-
nals used are signals from the MIT arrhythmia database [11]. The
records are represented with 12 bit per sample, and the sampling
frequency is 360 Hz. The ECG signal used for training is MIT100,
0:00 to 5:00 minutes, and the test signal is MIT100 5:30 to 10:30
minutes. The speech signals used are recorded at 16 kHz in a
room without echo, and downsampled to 8 kHz. 8.75 seconds of
speech data is used for training, and the test signal is 8.75 seconds
of speech recorded under the same conditions as the speech used
for training.

In Figure 1 the training curves are compared to the training
curves for the same training signals using the frame design method



presented in [1]. For all the training experiments in this paper,
the initial frames consist of normalized versions of the first signal
vectors in the training set.
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Figure 1: MSE is plotted as a function of training iterations. The
dashed curves are taken from [1], and the solid curves are obtained
using MOD. In a), b), c), d), e), and f) the training signal is an
ECG signal, and 1,2,3,4,5, and 6 frame vectors are used in each
approximation, respectively. In g), h), i), j), k), and l) the training
signal is a speech signal, and 1,2,3,4,5, and 6 frame vectors are
used in each approximation, respectively.

The optimized frames are tested on the test signals. Figure 2
compares the results of the frames optimized using the algorithm
in [1] with the results of the frames optimized using MOD.

5. CONCLUSION

From the experiments it is seen that the MOD performs signifi-
cantly better than the frame design method presented in [1]. In
the old method we made assumptions on the direction to adjust the
frame vectors. With MOD no assumptions are made. For a given
frame and approximation, MOD gives theoptimal adjustment of
the frame vectors in each iteration. The suboptimal vector selec-
tion algorithm still makes it impossible to guarantee improvement
in each iteration.

The training experiments show that the MOD provides better
convergence properties than the old method. Using the MOD, the
MSE decays faster and converges on a lower level than the result-
ing MSE using the old method.
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Figure 2: MSE is plotted as a function of different numbers of
vectors in an approximation. Test signal is used. Dotted: frames
optimized by the old frame design algorithm, solid: frames opti-
mized using MOD a) speech signal, b) ECG signal, MIT100.

In future work complete compression results using the MOD
frames will be presented. Compression using frames designed by
the old method performed well at low bitrates [12, 13], and we
have reason to belive that using MOD frames the rate-distortion
results will be even better.
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