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ABSTRACT

Time-Frequency Distribution (TFD) based on Cohen’s class has
significant potential for the analysis of a number of non-stationary
signals. One of the discrete formulations is the recently intro-
duced Alias-Free Generalized Discrete-Time TFD (AF-GDTFD).
The spectral decomposition of the kernel allows the computation
of AF-GDTFD as a weighted sum of spectrograms. The partial
sum has been shown to offer a vehicle to trade-off between ex-
actness and computational load. This paper proposes a scheme
which exploits local approximations by adapting dynamically the
accuracy of spectrograms to the eigenvalue magnitudes. The ap-
proach employs the wavelet packet transform followed by a block-
recursive Fourier transform and a compensation network. Adap-
tive selection of subbands for further processing reduces substan-
tially the computational cost while still preserving an acceptable
quality. The approach is attractive in terms of VLSI aspects due to
the modular structure, local connections and stream processing.

1. INTRODUCTION

Spectral analysis of the time-varying frequency content of sig-
nals is an important task in many DSP applications. Classical
method relies on the evaluation of short-time Fourier transform
(STFT) since the Fourier method is well understood and efficient
implementation techniques built around the Fast Fourier Trans-
form (FFT) are available. The class of bilinear signal transforma-
tion defined by Cohen [1], which includes the spectrogram and the
Wigner-Ville distribution, provides a richer tool for non-stationary
signal analysis. Each of these members is associated with a ker-
nel function which is independent of the signal. These kernels
mainly differ in their smoothing behavior in the time-frequency
domain and have been successfully applied to a wide range of ap-
plication in terms of off-line analysis [2]. The main drawback of
these Time-Frequency Distributions (TFDs) is their high compu-
tational requirement which limits their use in systems where hard-
ware resources (power consumption, area) are costly. Different ap-
proaches have been proposed to accelerate the TFD computation,
especially for time-frequency representation of long signals. Most
of these approaches take the advantages of the symmetric structure
of the distribution kernel and autocorrelation matrix of the signals
to reduce the computation. Other approaches look for recursive
implementation when using some specific running windows. A
method proposed by [3] considers the eigen-decomposition of the
kernel for the computation of the Alias-Free Generalized Discrete-
Time TFD (GDTFD) in [4]. Due to available packages in hardware

and software for spectrogram-based evaluation, this computation
method provides a smooth transition from the classical and well-
known STFT to kernel-based TFD.

The paper is organized as follows: first, we review the idea of
AF-GDTFD shortly. Next, the main structure of our data-driven
adaptive scheme is presented which is based on the wavelet packet
transform (WPT) to divide the input signal into subbands and a
block-recursive FFT to perform the required down-sampling in fre-
quency. A detailed complexity discussion is then followed by an
example to prove the effectiveness of the scheme.

2. EIGEN-DECOMPOSITION BASED AF-GDTFD

The class of bilinear TFD [1] is a conceptual and theoretical im-
provement compared to windowed spectral analysis. The process-
ing of discrete samplesx(n) requires a discrete version of TFD.
One of these formulations is the AF-GDTFD introduced in [4]:
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After a variable transformation on(n;m), the resulting shifted
kernel ~ (n1; n2) can be represented by an eigen-decomposition
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�kvkv
H
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wherevk = fvk(n)g
2L�1
n=1 [3]. Combining Eq. 1, 2 and 4,TFDAF

can be expressed as a finite, weighted sum of discrete-time spec-
trograms by
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where tfdAF (n) = [TFDAF (n; !0) : : : TFDAF (n; !L�1)]
T

is a time-varying column vector evaluated at!l = f 2�l
L
gL�1
l=0 .

F2L�1 is the Fourier matrix of size2L�1,V�
k is a diagonal matrix

with v�k on its diagonal.x(n) = [x(n�L+1) : : : x(n) : : : x(n+
L� 1)]T is the column data vector.(# 2) specifies the decimation
by 2 which removes the odd rows (due to symmetric structure of
RGx (n;m). IL is the indentity matrix of sizeL� L.

The computation at each time step is2L � 1 weighted spec-
trograms of size2L � 1 with a frequency resolution of2�

L
. A

straight-forward scheme would be the padding by one zero in or-
der to take advantage of FFT (from here onN = 2L for short). An
approximation of the calculation can be achieved by considering
only the partial sum over thêL largest�k in magnitude. However,
the number of eigenvalues used to computetfdAF provides only
limited degree of trade-offs between spectral quality and compu-
tational time.

3. AF-GDTFD APPROXIMATED COMPUTING

It is apparent that the accuracy of the spectrogram remains the
same, independent of the eigenvalue magnitudes. Besides the global
approximation by restricting tôL significant eigenvalues, we would
like to have a scheme which allows arbitrary frequency coverage
and frequency resolution for the local approximation. We also
would like to do the approximation on an adaptive basis to ac-
count for the time-varying nature of real-world signals. The main
idea of the approach is that the accuracy of each spectrogram in
Eq. 5 can be sacrificed with decreasing magnitude of its associ-
ated eigenvalue. The second issue is the application of WPT as a
subband preprocessing step, to break down a large size FFT into
smaller FFT blocks in parallel and further select subbands to be
processed using some significance measures.

3.1. WPT-based Precomputing

The basic block of the wavelet transform is a two-channel filter
bank with the analysis filters~g (high-pass) and~h (low-pass) fol-
lowed by down-sampling. The inverse transform first up-samples
and uses two synthesis filtersg (high-pass) andh (low-pass). For
perfect reconstruction, the four filters have to fulfill a set of rela-
tions. For details, we refer to e.g. [5]. For the general case, the
time-domain analysis matrixWN and synthesis matrixW�1

N of
sizeN �N is of the double-shift type
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According to [6], we giveWN in a circulant structure to deal with
finite sequence. Other methods such as reflections, interpolation,
and boundary filters can also be used but it would not affect our
argument significantly. We also assume thath0 andh1 (or ~h0, ~h1)
are not both zero, but the number of the filter taps (J , ~J ) could
vary. This would also include the biorthogonal case.

Exploiting the fact thatW�1
N WN = dIN (d = 1 in the or-

thogonal case), the factorization of the Fourier matrixFN can be
achieved by

FN = d�1 � FNW
�1
N WN (9)
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as in [7] but we do not restrict to the orthogonal case. The Fourier
transformFNW�1

N can be then simplified since its result are just
the Fourier transformsFNh = [aN=2 cN=2]

T andFNg = [bN=2
dN=2]

T and their time-shifted versions. WritingAN=2, BN=2,
CN=2, DN=2 as diagonal matrices withaN=2, bN=2, cN=2, dN=2
on the diagonals, respectively, the factorization can be formulated
in a more compact form. For short, we will refer to the matrix built
from these diagonal matrices asPN .

WPT is a generalized version as it iterates the two-channel
filter banks in the subband and thus effectively decomposes both
high and low frequency bands [8]. Considering the full binary tree
results in a completely evenly spaced frequency resolution and

FN = d�1 �
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PN

D�1O
q=1

(I2 
PN=2q )

#
�
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I2D 
 FN=2D

�

�

"
D�1O
q=1
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WN=2q )WN

#
; (10)

where
 represents the Kronecker product. The notation
t
q=1Aq

is a shorthand forA1 
 � � � 
At for t � 1 and1 for t � 1. D is
the number of decomposition levels.

3.2. Block-recursive Fourier Transform

The frequency down-sampling as given in Eq. 5 can be elegantly
considered by a block-recursive Fourier transform. The proposed
scheme considers the FFT of two consecutive blocks of sizeL and
sum the corresponding values to obtain the even channels of a2L-
point DFT which is equivalent to remove the odd frequencies of the
2L-point DFT. In general, the DFT ofx = [x(0); x(1); : : : ; x(ML�
1)]T can be formulated as

y = FMLx (11)

yq =
M�1X
m=0

FLEqmxm; (12)



wherey = [y(0) y(1) : : : y(ML�1)]T . yq is theq-th channel of
the down-sampled column vectory byM , i.e. it contains the DFT
resultsy(k) at discrete frequenciesk = fq; q+M; : : : ; q+M(L�
1)g for q = f0; 1; : : : ;M�1g. Eqm is a diagonal matrix with en-

tries fe�j
2�q(mL)
ML ; e�j

2�q(mL+1)
ML ; : : : ; e�j

2�q(mL+(L�1))
ML g, and

xm = [x(mL); x(mL+ 1); : : : ; x(mL+L� 1)]T . In our case,
the decimation by 2 impliesM = 2 andq = 0.

Finally, the combination of the WPT and block-recursive FFT
leads to the following factorization of(# 2)FN :

(# 2)FN = d�1

"
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In order to control adaptively the number of FFT blocks to be
performed, we can algorithmically characterize the control signals
by a vectorD(n) = [0 1 � � � 2D�1] with i 2 f0; 1g for the
parallel FFT blocks asI2D�D(n)
(# 2)FN=2D , where�D(n) is
a time-varying diagonal matrix withD(n) on its diagonal. Here,
i = 0 implies that thei-th FFT block can be set to zero since its
corresponding subband has been characterized to be irrelevant.

The main contribution of applying a WPT-based computation
is that WPT leads to a spectral decomposition of the considered
signal into subbands. In order to trade-off computational complex-
ity against accuracy, one can now select the subbands of interest
(”best subbands”) while suppressing the rest. The selection can
be either static based on a-priori knowledge about the process or
data-driven adapted to time-varying signal. For the last case, we
will need a measure to evaluate the relevant subbands among all
available and the overhead of these cost functions should be accu-
rate but simple enough in order not to gamble away the savings. It
is easy to understand that the primary subbands should give large
coefficients in magnitude corresponding to large energy so that the
problem reduces to estimate the energy of each subband. Differ-
ent energy estimation schemes can be considered and are not dis-
cussed further in this paper. Our proposed data-driven adaptive
scheme to compute the AF-GDTFD ofx(n), n = f0; 1; : : : g con-
sists now of the following steps:

Algorithm 1 Proposed Adaptive Computation of AF-GDTFD
1: Choose a kernel and compute its eigen-decomposition, the

number of relevant eigenvaluesL̂, precompute all matrices for
WPT and compensation network.

2: Start with�D(�L; l 2 [1 : : : L̂]) = I2D .
3: Start with n = 0
4: repeat
5: for k = 1 : : : L̂ do
6: PerformV�

k � x(n) as given in Eq. 5.
7: Calculate the N-point FFT using the factorization in

Eq. 13 and�D(n� 1; k).
8: Calculate a new�D(n; k) based on an application-

specific energy estimation procedure.
9: Calculate the spectrogram weighted by�k and update the

tfdAF (n).
10: end for
11: until End of signal

4. COMPLEXITY DISCUSSION

The estimation of operational counts can follow the three separated
stages WPT, block-recursive FFT withM = 2 and the compen-
sation network. For the comparison, we note that a complex mul
can be realized by 3 real muls and 5 real adds. A standard radix-2
N -point FFT requires in totalN

2
logN complex muls and2NlogN

complex adds. Further, we assume for simplicity the orthogonal
case, where both filters have the same lengthM . We introduce
also a variableS denoting the subband usage in %.

For the computation of WPT we refer to the lifting scheme
which requires(N�(M+1)

2
+ 2)D real mul andN�(M+1)

2
D real

adds [9]. For2D block-recursive FFTs of lengthN=2D, we have
S2DM( 1

2
N

M2D
log N

M2D
) complex muls. The number of complex

adds consists ofS2DM(2 N
M2D

log N
M2D

) for the FFT,N
2

for the
averaging, and an additional part due to the complex multiplica-
tion.

For the cost of the compensation network we have to differ
between the caseD = 1 andD � 2. For the first case, the ma-
trix PN=2 has two non-zero terms in each row resulting inS2N

2
complex muls. As above, in addition to the number of adds due
to complex multiplications, there is one complex addition per row
yielding anotherSN

2
complex adds. IfD � 2, note that the factor

S only influences the first and last compensation stage. The oper-
ational counts for muls are twice of that forD = 1. The first stage
requires2D�1 � N

2D
� bS2D�1c complex adds where2D�1 is the

number ofPN=2q+1 ; q = D � 1 with size N
2D

� N
2D

. For the last
stage, one has againSN

2
complex adds. For theD�2 mid-stages,

there are(D� 2) 2N
M

complex muls and(D� 2)N
2

complex adds.
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Figure 1: Normalized cost of Eq. 13 versus standard radix-2 FFT
followed by(# 2).

In Fig.1, the normalized computational cost for the filter length
2 (Haar) and 4 is given if a subband usage of25% is assumed.
With a moderate number of decomposition levels (up to 3), the
proposed approach requires especially for long signal block clearly
less computation operation as using the standard approach for the
given approximation degree. Further, the number of real additions
is reduced much stronger than the multiplication due to the com-



pensation network which puts the highest burden on the total cost.
This is also the reason why more than 3 decomposition levels are
not recommended although a sharper subband selection would be
possible. From this point of view, it is also clear that the proposed
scheme is advantageous in terms of computational counts if only
approximation is involved. The selection of filter length and de-
composition levels depends on a-priori knowledge about the pro-
cess or expected value of subband usage.

5. EXAMPLE

The proposed approach has been applied to a synthetic signal con-
sisting of one Dirac pulse, two simultaneous sinusoidal pulses,
a chirp, a Gaussian pulse and again two Dirac pulses. A dis-
crete cone-shaped kernel (n;m) = e�2�m2

for jnj � jmj
2

,
jmj � L � 1, with L = 128 was used (i.e.N = 256). � was
so chosen that (n;�L) = 0:01. L̂ was set to 6 with�1:::6 =
31.1277, -28.7581, -4.0667, 3.4149, -0.7395, 0.3639. For the WPT
we chose Daubechies 4-tap filter and two decomposition levels.
The energy estimation is based on the sum of absolute WPT coef-
ficients. i, i 2 f0; 1; 2; 3g is set to one if the estimated energy
of its corresponding subband exceeds the adaptive threshold. The
strategy to set the threshold in this example is based on the knowl-
edge of the chosen eigenvalues. In each time step at the process-
ing with �l, the maximum estimated subband energy is scaled by

1�j�lj=
PL̂

k=1 j�kj and serves as a hard threshold for the subband
selection in the next time step. The result is shown in Fig. 2. It is
apparent that although only about20:5% of subbands on the aver-
age are selected for usage, the visualization is still sharp enough to
follow the time-varying signal in the AF-GDTFD. Based on Fig. 1,
the complexity has been reduced to at least28% and70% for the
number of real adds and muls, respectively. The Frobenius norm
of the average error for each time-frequency sample between the
AF-GDTFDs in Fig. 2 takes on5:2 � 10�6.
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Figure 2: On the top is the AF-GDTFD computed using the first
six largest eigenvalues and standard FFT. Below is the result if
the additional approximation is performed using the proposed ap-
proach.

6. CONCLUSIONS

In this paper, we have proposed a data-driven scheme to accel-
erate the computation of discrete AF-GDTFD targeting the time-
frequency representation of long signals and/or real-time systems.
The main idea is to follow extensively the concept of approxima-
tion and incremental refinement in order to trade-off computational
requirements against accuracy. Our approach involves subband fil-
tering on the basis of WPT to decompose the input signal into dif-
ferent spectral subbands (not restrictive to orthogonal wavelets).
FFT blocks of smaller size are then applied to the outputs of WPT
and the results are recombined together through a compensation
network. A block-recursive scheme inside the FFT blocks again
reduces the computational complexity of the following compensa-
tion network which constitutes the largest computational cost for
N less than 256. Different energy estimation scheme can be uti-
lized to select only relevant subbands in an adaptive or static man-
ner. A detailed analysis of complexity shows that even savings in
the order of more than50% is realizable if a low subband usage
can be achieved (as is the case for applications in monitoring of
mechanical processes) and a moderate number of WPT decompo-
sition levels is applied. Furthermore, the proposed scheme is quite
attractive in terms of VLSI due to modular structure, local con-
nections and re-usability (parallel FFT blocks of smaller size) as
well as stream processing (WPT and block-recursive computation
of FFT). These aspects are currently under investigation.
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