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ABSTRACT

A subpixel-resolution image registration algorithm based on the
nonlinear projective transformation model is proposed to
account for camera translation, rotation, zoom, pan, and tilt.
Typically, parameter estimation techniques for transformation
models require the user to manually select feature points
between the images undergoing registration. In this research,
block matching is used to automatically select correlated feature
point pairs between two images, and these features are used to
calculate an iterative least squares solution for the projective
transformation parameters. Since block matching is capable of
estimating accurate translation motion vectors only in
discontinuous edge regions, inaccurate feature point pairs are
statistically eliminated prior to computing the least squares
parameter estimate. Convergence of the projective
transformation model estimation algorithm is generally
achieved in several iterations. After subpixel-resolution image
registration, a high-resolution video still may be computed by
integrating the registered pixels from a short sequence of low-
resolution image sequence frames.

1. INTRODUCTION

Many applications within the realm of sensor fusion require the
accurate registration of multiple image channels.  The challenge
involves registering data acquired not only from the same sensor
array after a camera transformation, but also registering images
acquired by dissimilar sensors.  In addition, subpixel accuracy
may be necessary when the sensor arrays have different
resolutions [8].  The goal is to perform multiframe integration
[2][3][4][5] through the automated registration of image
sequence frames.  In this research, the image registration
algorithm is based on the projective transformation [2][6][7],
which takes into account camera translation, rotation, zoom,
pan, and tilt.  This transformation is accepted as the most
accurate of the camera models.  Since it is a nonlinear model,
direct least squares estimation is not capable of estimating the
parameters properly from the data sets. Typically, common
feature   points   that   appear   within   the   images  undergoing
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registration must be selected manually, and these features are
used in the parameter estimation algorithm.  In a directly related
application to [7], the block matching algorithm [1] is used to
automatically select correlated feature point pairs between two
images, and these features are utilized in an iterative algorithm
to estimate the nonlinear projective transformation parameters.
Highly accurate subpixel-resolution registrations are possible
using this technique.  High-resolution video stills may be
computed by integrating the pixels from a short sequence of
registered low-resolution video frames. Simulations that
perform enhancement on a short sequence of under-sampled
intensity video frames show significant dealiasing when
compared to the low-resolution reference frame.

This paper is organized as follows. In Section 2, the projective
transformation model is introduced, and the automated
parameter estimation algorithm is proposed.  Section 3 describes
simulations that verify the registration accuracy using the
projective transformation, as well as experiments in multiframe
integration. A brief summary along with future research
directions is provided in Section 4.

2. AUTOMATED IMAGE REGISTRATION
This section discusses image registration in the context of
transformation model parameter estimation, and presents the
automated projective transformation estimation algorithm.

2.1 Image Registration Notation

Denote the point
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as a spatial location within image y(l), and the corresponding
point within the reference image y(k) as
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These two spatial locations represent a pixel value that is
correlated between the images; i.e., the pixel at location x in y(l)

undergoes a transformation to position ′x  in y(k).  By estimating
the parameters of this transformation and then warping image
y(l) accordingly, the pixels should be properly registered.



2.2 Projective Transformation Model

To accommodate for camera displacement, rotation, zoom, pan,
and tilt, the eight-parameter projective model [2][6][7],
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has been selected for the registration algorithm.  The numerator
of the projective model is the linear six-parameter affine model,
which accounts for translation, rotation, and zoom, while
perspective transformations are handled in the denominator
term.  Explicitly, the rotation matrix, A, the displacement
vector, b, and the perspective vector, c, may be expressed as
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Unfortunately, the nonlinearity of the model makes the direct
estimation of these eight parameters difficult.

To estimate the projective transformation parameters, an
iterative least squares approach will be taken. The least squares
problem statement is defined as
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Block matching will be used to automatically select feature

points x in y(l) and their transformations )(ˆ xbxx +=′  in y(k)

during each iteration.  The block matching estimate using the
mean squared error (MSE) criterion [1] is defined as
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for a (2p + 1) x (2p + 1) pixel block.  During the ith iteration of
the algorithm, a least squares estimate of the transformation
parameters, ),,( cbA iii , is computed from a set of N feature

points and their transformations, ),( xx ′k k  for k=1,…,N, as

image y(l) is iteratively warped towards y(k).

To select the feature points manually, the user must identify at
least N=4 feature points xk in y(l) which correspond to pertinent
objects within the scene [2].  These points should be spaced
relatively far apart, and they must not lie on the same line.  For
every feature point xk  selected in y(l), the corresponding

transformed point x′k must be located within y(k).  These feature

point pairs, ),( xx ′kk  for k=1,…,N, are then used to estimate the
transformation parameters.  The feature points may be selected
automatically by sparsely sampling the data in a regular pattern
and using block matching to estimate the transformed positions,
with the knowledge that many of the feature points located in
smooth regions will yield inaccurate feature point pairs [7].  By
calculating a least squares solution for the projective
transformation using only the “best” feature point pairs, the
registration parameters can be estimated in most cases both
automatically and efficiently.

Projective Transformation Estimation Algorithm:

1. Set A0=I, b0=0, c0=0, yy )()(
1

ll = , and iteration number i=1.

2. Select N feature points, xk  for k=1,…,N, by sparsely

sampling a region within image y )(l
i  which contains a large

number of edges.  Every fourth point may be selected both
horizontally and vertically within a spatially active region to
achieve acceptable results.

3. Estimate block matching motion vectors at each of the N
selected feature points.  Denote the kth transformed point as

                                        )(ˆ xbxx kkk +=′ .

4. Estimate the projective transformation parameters,
),,( cbA iii , using all N block matching feature point pairs,

),( xx ′kk  for k=1,…,N, to calculate the least squares solution
to the following problem statement:
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5. Since block matching vectors located in smooth image
regions and areas of object occlusion will be inaccurate, the
M least accurate feature point pairs will be statistically
eliminated from the parameter estimation problem. Denote
the residual of the kth transformed feature point, x′k , and the
currently estimated projective transformation as
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Calculate the sample mean, expressed as
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and the following residual sample variances:
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If σ 11
>rk  or σ 22

>rk , eliminate the corresponding

feature point pair ),( xx ′kk  from the least squares problem.

6. Re-estimate the least squares projective transformation
parameters, ),,( cbA iii , using the )( MN −  most accurate
block matching feature point pairs:
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7. Warp the original image y(l) by applying the overall
projective transformation,
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to all pixels, and set y )(
1

l
i+  equal to the resulting image.  This

warped image is to be registered with the reference image
y(k) during the next iteration.



8. Calculate the change in the projective model parameters
from iteration i-1 to i.  If the change is small, the aggregate
parameter estimates are given as follows:
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Otherwise, set i=i+1, and return to Step 2.  Convergence is
generally achieved in two to three iterations.

For subpixel-resolution registration, the reference image, y(k),
and the image to be registered, y(l), must first be up-sampled by
a factor of q.  These up-sampled images are used to estimate the
1/q-th pel resolution parameters. In the simulations, up-
sampling is performed using cubic B-spline interpolation [4].

3. SIMULATIONS
Two frames from the Film image sequence were selected to
show the efficacy of the automated registration algorithm.  The
image sequence is a film taken by a news crew from a
helicopter, and it contains translational and rotational motion as
well as a slight camera pan and tilt.  Figure 1 shows the original
high-resolution reference frame, and Figure 2 shows the results
of integer- and subpixel-resolution registration.  In the subpixel
case, the original frames were down-sampled by a factor of 4.
To show the quality of the registrations, the reference and the
warped frames have been superimposed.  Both the integer and
subpixel data align extremely well, with the exception of the
spire near the middle of the frames and the moving vehicles.

Multiframe enhancement involves the integration of a short
sequence of low-resolution video frames to generate a high-
resolution video still (HRVS) image [2][3][4][5].  By registering
a set of low-resolution frames with respect to a reference image,
the pixels should be aligned.  However, the pixels may not be
perfectly registered on the subpixel-resolution grid, and this
subpixel overlap can be exploited to reduce aliasing artifacts.
To perform multiframe enhancement, all candidate frames are
first up-sampled by a factor of q using cubic B-spline
interpolation. Using the interpolated data, subpixel-resolution
projective transformation parameters are estimated for every
frame with respect to the reference image.  Each original low-
resolution frame is then expanded by a factor of q using zero-
order hold up-sampling, and these blocky images are warped
using the estimated projective transformation parameters.
Finally, a vector median filter is applied to the registered pixels
at spatial location x, with the filter output used as the value of
the high-resolution image estimate at that point.  Figure 3
depicts the results of the multiframe integration simulations on
3, 5, and 7 down-sampled frames from the Film image
sequence.  Visually, the estimate computed using 5 frames
appears to be the closest to the original high-resolution
reference image.  An advantage of this multiframe enhancement
technique over other super-resolution enhancement algorithms
[3][4][5] is that the original video frames are not interpolated
prior to their integration.  Zero-order hold up-sampling simply
replicates the pixels within a square block, and these large
pixels are then warped using the estimated transformation
parameters.  No new image information is incorporated into the
high-resolution video still estimate; the image sequence frames
are utilized directly without alteration.

4. CONCLUSION
An automated image registration algorithm based on the
projective transformation has been investigated which accounts
for camera translation, rotation, zoom, pan, and tilt.  Feature
selection is performed by the block matching algorithm, in
which the end-points of translation vectors serve as feature point
pairs.  Simulations were conducted to show the efficacy of the
registration algorithm and the performance of multiframe
integration applied to low-resolution video.  Another application
under investigation is image mosaicking, since the projective
transformation may be used to match overlapping image regions
acquired by a moving camera. Further research will also be
conducted in dissimilar sensor image registration and fusion.
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Figure 1.  High-resolution Film reference frame.



Figure 2.  Image 1: Superimposed original integer-
resolution frames.  Image 2: Superimposed registered
integer-resolution frames.  Image 3: Superimposed
original subpixel-resolution frames (1/4-th pel
resolution).  Image 4: Superimposed registered
subpixel-resolution frames (1/4-th pel resolution).

Figure 3.  Multiframe integration of the Film image
sequence.  Image 1: Reference frame (PSNR=25.02 dB).
Image 2: High-resolution video still computed using 3
frames (PSNR=25.49 dB).  Image 3: High-resolution
video still calculated using 5 frames (PSNR=25.52 dB).
Image 4: High-resolution video still estimated using 7
frames (PSNR=25.43 dB).


