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ABSTRACT

The wavelet shrinkage denoising approach is able to
maintain local regularity of a signal while suppressing
noise. However, the conventional wavelet shrinkage
based methods are not time-scale adaptive to track the
local time-scale variation. In this paper, a new time-scale
adaptive denoising method for deterministic signal
estimation is presented, based on the wavelet shrinkage.
A class of smooth shrinkage functions and the local
SURE (Stein’s Unbiased Risk Estimate) risk are
employed to achieve time-scale adaptive denoising. The
system structure and the learning algorithm are
developed. The numerical results of our system are
presented and compared with the conventional wavelet
shrinkage techniques as well as their optimal solutions.
Results indicate that the new time-scale adaptive method
is superior to the conventional methods. It is also shown
that the new method sometimes even achieves better
performance than the optimal solution of the
conventional wavelet shrinkage techniques.

1. INTRODUCTION

Denoising a given noise corrupted signal is a traditional
problem in both statistics and in signal processing
applications. Linear denoising methods are not so
effective when transient nonstationary wideband
components are involved since they have similar
spectrum to the noise [1].  Recently, Donoho et al. [2,3]
developed a nonlinear wavelet shrinkage denoising
method for statistical applications. The wavelet shrinkage
methods rely on the basic idea that the energy of a signal
(with some smoothness) will often be concentrated in a
few coefficients in wavelet domain while the energy of
noise is spread among all coefficients in wavelet domain.
Therefore, the nonlinear shrinkage function in wavelet
domain will tend to keep a few larger coefficients
representing the signal while the noise coefficients will
tend to reduce to zero. Normally, the soft-thresholding
function, +−= |))(|sgn(),( txxtxsη , is used as the

standard soft-thresholding function. The wavelet

shrinkage methods achieve asymptotically near optimal
minimax mean-square error for a wide range of signals
corrupted by additive white Gaussian noise and retain a
good visual effect [2,3]. However, conventional wavelet
shrinkage methods are not time-scale adaptive and do not
have the capability to track the local time-scale variation
in signals. All the parameters are independent on time
and often preset. This is partially because the standard
shrinkage function does not have high-order derivatives
and thus the gradient based adaptive schemes are not
tangible in many cases. Recently, a new type of shrinkage
functions has been developed by Zhang et al. [1] and are
defined as follows:
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They have similar shrinkage properties to the standard
shrinkage function and have been proved to have better
numerical properties in some applications. (These
functions are illustrated in Fig. 1.) Unlike the standard
shrinkage function, these shrinkage functions have high-
order derivatives so that to develop the gradient based
adaptive schemes in wavelet shrinkage methods become
tangible.

In this paper, a new time-scale adaptive wavelet
shrinkage denoising method for deterministic signal
estimation is presented. The new system employs the
local SURE (Stein’s Unbiased Risk Estimate) risk and
scale dependent wavelet shrinkage method. The gradient
based adaptive algorithm to find time-scale adaptive
thresholds is developed by using the shrinkage functions
in Eq. (1). We take advantage of the local time-scale
information of both the signal and the noise in the new
method. It is fully adaptive with respect to the time and
scale. Numerical simulations are presented using the new
method and the results are compared with conventional
wavelet shrinkage methods. It is proved that the
performance of the new method is much better than the
conventional wavelet shrinkage methods in the MSE



sense. Moreover, it is also shown that the new method
often performs better than the optimal solution of the
conventional wavelet shrinkage methods.

2. TIME-SCALE ADAPTIVE DENOISING
USING WAVELET SHRINKAGE

Assume that the observed data vector
T

Nyyy ],,[ 110 −= �y  is given by yi=f i+ni, i= 0,1,…,N-1,

where fi is samples of a deterministic signal f and n is
Gaussian white noise with i.i.d. distribution N(0,σ). The
denoising objective is to estimate real signal f from the
observed data vector y with minimum mean square error

(MSE), i.e., to minimize MSE error of the estimation f̂

from a given noise corrupted signal y:
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Here we use the mean instead of the mathematical
expectation because the optimal solution is desired for
each observed data vector y. In our new time denoising
method, the orthogonal discrete wavelet transform
(DWT) is used. The risk function given in (2) can be
expressed in wavelet domain:
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where v(j,m) represents the m-th wavelet coefficient of
the signal f at scale j, j = 1,...,J. Note that only the scaling
coefficients at the largest scale J are useful in DWT and
v(0,m) is used to represent the m-th scaling coefficient at
the largest scale J. Similarly, ),(ˆ mjv  and u(j,m) represent

the wavelet coefficients of the estimate f̂  and the

observed data vector y, respectively.

To achieve the time-scale adaptive denoising, we need to
find the time series of the signal in wavelet domain by
rearranging the wavelet coefficients. Suppose the signal
samples enter the DWT processing block in a time order.
Then the time series vi of the wavelet coefficients can be
obtained as
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That means, at the time we have two wavelet coefficients
at scale j, we can obtain one wavelet (and scaling)
coefficient at the scale j+ 1 due to the downsampling
operation in DWT. Here M is the number of the scaling
coefficients at the scale J. The wavelet coefficients time
series vi and ui can also be constructed in the same way.
Then Eq. (3) becomes
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We note that the conventional scale dependent shrinkage
method is not fully scale adaptive since the thresholds at
each scale are not selected using a fully adaptive
algorithm. Since it has been proved that the scale
dependent shrinkage scheme has better performance than
universal shrinkage scheme [2-4], our new method is
developed based on scale dependent shrinkage scheme,
i.e., different thresholds will be used for the wavelet
coefficients at different scales.

In the new method, the estimated wavelet coefficients v̂
are obtained using time-scale adaptive shrinkage of
wavelet coefficients u of observed data y, i.e.,

)),(),,((),(ˆ mjtmjumjv kη= . For a time series ui, it can be

written as ))(,(ˆ iuv iki tη= , t(i) denotes vector

[t1(i),t2(i),…,tJ(i)]
T, tj(i) is the time-scale adaptive

threshold at scale j and time i. Note that the scaling
coefficients u(0,m) are not shrunk since they contain the
basic information of the signal and only one tj(i) is
employed to perform shrinkage on ui at each time i. In
our nonlinear time-scale adaptive denoising, we will
attempt to select the time-scale adaptive parameter tj(i) in
the nonlinear shrinkage function ηk(x,t) to minimize the
MSE risk.

The MSE risk Eq. (4) is not known since the real signal f
is not known. We will estimate the MSE risk based on
the SURE risk. The SURE risk is established for signal
estimation [3,7] as follows: assume uvtug −= ˆ),( ,

where g= [g0,g1,…,gN-1]
T is a mapping from RN to RN and

t denotes vector [t1,t2,…,tJ]
T in scale dependent shrinkage

scheme. The Stein’s Unbiased Risk Estimate (SURE) is
defined as:
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Stein [7] showed that when g(u) is weakly differentiable,
the SURE risk is an unbiased estimator of the MSE risk.
However, to obtain the local time-adaptive parameters,
the local MSE risk needs to be estimated. Therefore, we
will use the local SURE risk at each time i:
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Now, the time-scale adaptive denoising algorithm based

on )(tRi
s  can be developed as follows to minimize the

MSE risk by adjusting parameter t at each time.

Step 1.  Initialize parameter t0(0)= t0, l= 0.
Step 2.  At learning iteration l, for each input time sample
ui, i= 0,…,N-1, in wavelet domain, adjust t(i) using
following scheme,
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where ],,,[)( 21 )()()(= iiidiagi Jααα �α  is the training rate

matrix of each step and )(ijα  is the learning rate for

parameter tj.

Step 3. Set l=l+ 1 and tl(0)= tl-1(N-1). Repeat step 2 and 3
for ui, i= 0,…,N-1, until certain convergence criterion is
satisfied or the maximum training times are reached.

From Eq. (7) and (10), it is apparent that to calculate the
gradient of the SURE risk Rs

i, the second derivatives of
the shrinkage function have to be employed. Note that
although the standard soft-thresholding function ηs(x,t) is
weakly differentiable in Stein’s sense [7], it does not
have the second derivatives. Therefore, it is not possible
to use the standard soft-thresholding function to achieve
the above time-scale adaptive denoising scheme.
Therefore, here we employ the shrinkage function ηk(x,t)
of Eq. (1) and then the gradients of Rs

i can be calculated
accordingly.

In this way, the time-scale adaptive parameter t(i),
i= 0,…,N-1, can be obtained based on the local SURE
risk. The adaptive system structure of the proposed
method is shown in Fig. 2. In Fig. 2, yi, i= 0,…,N-1, are
the input samples. The DWT block is fast discrete
wavelet transform block [5,6] and IDWT block is the fast
inverse discrete wavelet transform. Samples ui, i= 0,…,N-
1, are the time series of wavelet coefficients of the input
signal in wavelet domain. The time series iv̂ , i.e., the

estimation of the wavelet coefficients time series vi of the
real signal, are obtained using the nonlinear shrinkage
function. The local SURE risk Rs

i is used to estimate the
MSE and then adjust the local time-scale adaptive
thresholds t(i) at each time i by the preceding learning
algorithm.

3. NUMERICAL EXAMPLES

The test signal is a Doppler signal, which is used by most
of other wavelet shrinkage related literature, as shown in
Fig. 3. The data length N is 2048 samples. The input
noise corrupted signals of different signal-to-noise-ratio
(SNR) are tested using some conventional wavelet

shrinkage methods as well as our new time-scale adaptive
wavelet shrinkage denoising method. The performance
comparison is shown in Table 1. For different input SNR
(SNRin) using different wavelet shrinkage methods of
estimation, the output SNR (SNRout) are given in Table 1.
TS-SURE represents our new time-scale adaptive
denoising method using η3(x,t). The initial value of the

adaptive method is selected as NNt j /log2)0(0 = , i.e.,

we start with a generally used universal threshold.
Convergence criterion for our time-scale adaptive
denoising method is maxi(t

l(i)-tl-1(i))<10-6.

For comparison, two typical conventional wavelet
shrinkage methods are applied in the numerical
examples. WaveShrink is the universal thresholding
scheme proposed by Donoho [2]. SUREShrink is an
optimized hybrid scale dependent thresholding scheme
based on SURE risk [3] which shows the best MSE
performance among the conventional wavelet shrinkage
denoising methods. The optimal solutions under MSE
risk of Eq. (2) are also calculated for universal and scale
dependent wavelet shrinkage schemes. UOPT represents
the numerical optimal scale dependent threshold
selection using standard soft-thresholding function
ηs(x,t). SOPT represents the numerical optimal scale
dependent threshold selection using the standard soft-
thresholding function ηs(x,t). The Daubechies8 least
asymmetrical wavelet [6] is used and the largest DWT
level J=6 is selected for all above methods.

As indicated in Table 1, our new time-scale adaptive
denoising method consistently outperforms the
conventional wavelet shrinkage methods (WaveShrink
and SUREShrink) in terms of the output SNR. The new
method often performs even better than the optimal
solutions (UOPT and SOPT) of the conventional
methods. This is likely due to the fact that the threshold
in conventional is independent on time. Also, in
numerical results, we found that the new method
performs much better than the conventional wavelet
shrinkage methods when the local signal frequency
changes rapidly, i.e., the new method extracts more
signal information in the left part of Doppler signal (see
Fig. 2) in the example. This indicates that the new time-
scale adaptive denoising method does have the capability
to track the local time-scale variation in signals. Other
numerical simulations show the similar results.

In the new time-scale adaptive denoising method, the
adaptive thresholds are selected automatically with
respect to both time and scale. This will be very useful in
practical applications.



4. CONCLUSION

In this paper, a new type of nonlinear time-scale adaptive
denoising system based on wavelet shrinkage scheme has
been presented. The new time-scale adaptive algorithm is
based on SURE risk and certain type of shrinkage
functions with high order derivatives. Numerical results
show that the new time-scale adaptive denoising method
performs much better than conventional wavelet
shrinkage methods in MSE sense. In some occasions, the
new method even performs better than the optimal
solution of the conventional wavelet shrinkage methods.
Unlike conventional wavelet shrinkage denoising
method, the new method can find the local time-scale
adaptive thresholds from the input data samples
automatically. Therefore, the new time-scale adaptive
denoising method is more practical and effective.
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Fig. 1. The standard shrinkage function ηs(x,t) (dashed line)                      Fig. 3. Test signal (Doppler)
and the shrinkage functions in Eq. (1) with k=1,2,3.
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         Fig. 2. The time-scale adaptive denoising system

SNRin (dB) -6 -3 0  3  6

TS-SURE  8.99  9.79 12.06 16.59 18.78

WaveShrink 7.40  8.11 10.14 11.87 14.44

SUREShrink 8.06  9.04 11.98 14.52 16.93

UOPT  7.52  8.44 11.12 14.64 16.95

SOPT  8.92 10.25 12.67 16.37 18.77

Table. 1. The output SNR (dB) of different denoising
methods


