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ABSTRACT

Thediscrete Fourier transform of signals constructed through mul-
tiplicative and additive iterative procedures is determined and its
specific features are considered. It is shown that — in spite of the
rather different structure of multiplicative and additive signals—the
Fourier transforms of both types of signals exhibit the property of
self-affinity. The power spectraof additive signalsproduced by dif-
ferent generating vectors have similar formsand can bedividedinto
similar branches. The number of branches dependson the genera-
tion level and the symmetry of the power spectrum of the generat-
ing vector.

1. INTRODUCTION

Numerous objects in science and engineering arising in many nat-
ural phenomena (e.g., turbulence, fluid mixing, aggregation) ex-
hibit a fractal or multifractal structure [1]. Thetypical property of
such objectsis that they areinfinitely complex: asmall portion of
itis, in acertain way, similar to the original. In signal processing,
sometypes of noise can be treated as fractal structures[2]. More-
over, fractal signals, which keep their main characteristics under
time and frequency scaling, promise to be important for commu-
nications and for many other applications|[3, 4, 5].

Multifractal structures are frequently associated with cascade
processes, and their models are generated through iterative proce-
dures[6, 7]. Real-world fractal structuresusually exhibit their self-
affine properties only for a certain number of scales and are de-
scribed in the model by the finite number of iterations n. In this
paper we consider discrete signal's, denoted by arow vector f,, and
constructed from a generating vector f; of size M,

f1 =[f1(0), f1(1),...

Julm), AM -1 (@)

with f1(m) € C, through the following iterative procedures:

fo=| . , @
[ i & fi(M — 1)

wherethe symbol ¢ standsfor multiplication and summationinthe
multiplicative and the additive case, respectively. A signal of level
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n: £ = [£a(0), f(1),. o, fa(m), ..o, fa(M™ = 1)] has M™
elements. Its coordinates can be written as

fn(k—l—Mn_lm) = fi(m) ® fa_1(k), (©)]

wherek =0,1,..., M" ' —1andm =0,1,...,M — 1. Itcan
be shown (see [8] for the case of additive vectors) that

fa(m + ME) = fooa(k) @ fi(m). 4

Equations (3) and (4) reveal the fractal structure of these signals.
Theaffine transformation of the n'"-generation signal f,, produces
the similar structure correspondingto the (. — 1)*"-generation sig-
nal fn_ 1.

In this paper we derive the expression for the discrete Fourier
transform (DFT) of multiplicative and additive signals, which re-
flectsthe hierarchial structure of suchsignals. The specificfeatures
of the power spectra of these signals are considered and are eluci-
dated by some particular examples.

2. MULTIPLICATIVE SIGNALS

We start from the consideration of the signals f,, generated by the
multiplicative iterative procedure (2). Such types of multiplica-
tive cascadesfor areal positive generator are used for producing
multiplicative measures appearing in avariety of natural phenom-
ena[6]. Asan examples, it is easy to see that the generator f; =
(1,0, 1) producesthe well-known triadic Cantor set [1]. Figure 1
shows a graphical representation of the multiplicative vector mag-
nitude | /()| for n = 10, generated by the complex vector f; =
(1,0,3 + 2¢). Note also that a generating vector with only one
nonzero element produces a multiplicative signal with also only
one nonzero element.

The discrete Fourier transform (DFT) of a sequence f, =

[fn(o)v fn(1)7 LR fn(m)7 LR fn(Mn - 1)] isQiVen by [9]

i27rlk) 7 ®)

M™—1
Fno(l) = Z fn(k)exp (— W
k=0
where ! isan integer. It iswell known that the DFT of a sequence
which contains M™ points, is periodic with period A ™:
Fo(l+ M"k) = Fu(l). (6)

Therefore we will investigate the structure of F., intheregion! €
[0, M™ —1].
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Figure 1: Magnitude of the multiplicative signal of level 10,
constructed by the generator f; = (1, 0, 3 + 21).

Substituting from Eqg. (3) into Eq. (5) we get

M1

X st (550)

k=0

M—1 .
X mzz:o fi(m)exp (_zZﬂm)

Z frn—1(k)exp (_i?wLik)’ %

where Fi (1) isthe DFT of the generator 1. Since

! M ik
LT
Fer (37) = 2 e (-57)
=0

correspondsto the DFT of f,,_; at thepointsi/M, Eq. (7) can be
expressed in the form

Fo(l) = Fn_y (I/M)Fy(1). ®

Using the periodicity of the DFT, F1({ + Mk) = Fi(l), one
finds that the DFT of f,, at the M -decimated point set { Mk | k =
0,1,...,M™ ' — 1} correspondsto the DFT of f,,_; multiplied
by F1(0):

Fn(l)

I
>
=
=
=

Fno(Mk) = Fr_y (k) F1(0). 9)
This relationship, together with Eq. (4) for m = 0, f,(Mk) =
fr—1(k) f1(0), indicates the self-affine structure of the multiplica-
tive signalsin the frequency and the time domain. Iterating Eq. (9)
thenyieldsforp =1,2,...,M"7 % - 1:

Fn(M%p) = FH0)Fng(p)- (10)

Continuing theiterative procedure (8) we derive the expression
for the DFT of f,,:

Fu() = ] (/M%) (11)
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Figure 2: Power spectrum of the multiplicative signal of level 10,
constructed by the generator f; = (1,0, 3 + 21).

with
M-1
l 27l
A (55) = 32 pme (-522),
m=0
In particular for I = 0 we get
M—1 n
Fu(0) = F'(0) = (Z fl(m)) : (12)
m=0

From Eq. (11), the hierarchial structure of the DFT of the muilti-
plicative signal can easily be seen: the DFTsof levelsn andn — 1
are connected as

Fu(l) = Fnoa (DFL(/M™TY). (13)

The power spectrum of f,, isaproduct of power spectraof fi,
defined at the fractional points:

n—1

ROl | AT (14)

k=0

If the power spectrumis represented on logarithmic scales, it takes
the form of a sum of n periodic functions with periods log M,
2log M,...,nlog M. This produces quasiperiodicity of theloglog
graphic of the power spectrum, where the number of quasiperiods
in theregion correspondingto [0, M™ — 1] equalsr — 1. Note also
that the power spectrum of signals constructed from a generating
vector with only one nonzero element is a constant vector.

Let us consider the generalized triadic Cantor set constructed
from the generator f1 = (p, 0, ¢), wherep = |p| exp(ip) and g =
|g| exp(1¢p). For the power spectrum of f; at the fractional points,
which definesthe power spectrum of all signals|F,,(1)|” aswe can
see from Eq. (14), we have

AN 2wl
(72 (57) | = b +Hal+2 bpal cos (25757 +¢ = ) - (15)



Figure 2 showsthe power spectrum of the multiplicative vector that
was represented in Fig. 1 (p = 1,¢ = 3 + 2¢), with logarithmic
scalesfor both coordinates. One can easily extract the typical struc-
ture which repeatsitself with different scaleresolutionsinn — 1 =
9 frequency regions. In the particular case |p| = |q|, Eq. (15) re-
ducesto |1 (1/3%)|" = 22 |p|* cos® (2x1/3*F! + (o — ) /2),
and the power spectrum of the Cantor sequence has the following
form:

n—1
|Fa() = 2" [pf>" T cos? (3k+1 — ) . (8)
k=0
Thus, for the following generatorsf, = (1,0,1), f1 = (1,0, —1),
andf; = (1,0, 1), which produce Cantor sequenceswith the same
energy distributions |f,. |, we have

E.(D? = 227 n:lcos2 2l /3F+1 ,
74
|Fo()]? = 22"T[.Z, sin® (271/35*') | and
|Fn (1)) 22 T[rz, cos® (2ml /3! 4 = /4)
respectively.

3. ADDITIVE SIGNALS

L et us consider the signals constructed through the additive proce-
dure (2), which was used for the generation of so-called fractrices
introduced recently [8]. Figure 3 showsa graphical representation
of the additive vector magnitude | f,.(I)| for n = 10, constructed
from the same complex generator f; = (1, 0,3 + 2:) which was
used for the generation of the multiplicative vector in Fig. 1.

Let us derive some relationships for the DFT of the additive
vector £, for different iterations. It is easy to seefrom Egs. (3) and
(5) that

Ml _1 M—1

ST S i (B) + £i(m)

= MF,_1(0) + M" ' F1(0), 17)

F,(0)

which, after n iterations, yields

Fo(0) = nM"™ ™" Fy(0). (18)

Substituting from Eqg. (3) into Eqg. (5) we get

Mmoo
2lk
Fl) = 3 facu(k)exp (_Zz\;n )Sl
k=0
- 2rlm)
+ 3 fi(m)exp (—’ o ) 2, (19)
m=0
where
— 2l M ifl=pM
PLTEN =
S = eXp(_ ] ):{ o iftizpm @

40
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Figure 3: Magnitude of the additive signal of level 10, constructed
by the generator f; = (1,0, 3 + 2).

and
Mo
WS (2
k=0
M ifl=0
0 ifl=pM,p#£0
exp(—inl/M) sin(xl/M) if1 £ pM

exp(—ixl/M™) sin(xl/M™)

(1)

with integer p. Then one finds that the DFT of f,, at the M-

decimatedpoint set {Mp |p =1,2,..., M™ * — 1} corresponds
to the DFT of f,,_; multiplied by M:

Mr-1_

FuMp) = MY fa(Res (- 22ENE)
k=0
= MF._(p). (22)

Therefore the DFTs of additive signals exhibit a similar property
of self-affinity asthe DFTs of the multiplicative ones[see Eq. (9)].
Iterating Eq. (22) thenyieldsforp =1,2,..., M"7¢ - 1:

Fo(pM*®) = M Fyq(p)- (23)

In particular, the DFT of a fractal vector f,, for i = pM™~!
produces the DFT of the generating vector fi: Fi(pM™™ ') =
M™ ' Fi(p) (p # 0) and F(0) = nM "~ F1(0).

From Egs. (17)-(21), it follows that the DFT of f,, constructed
with a generator of size M isgiven by

MPF,_1(0) + M™" ' F1(0) I=0
exp (—im sin(m FL) 1 pM.
exp (—imxl/M™) sin(zl/M™) 0 t#p

F.(l)=

(24)
Let usnow consider the power spectrum | F,(1)|* of an additive
vector. In order to analyze its structure, we define the following
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Figure 4: Power spectrum of the multiplicative signal of level 10,
constructed by the generator f; = (1, 0, 3 + 21).

subsets A, of theinterval [1, M™ — 1] for ¢ € [0,n — 2]

m € [0,M —1]
ke [oMm'me—1] &,
m+ kM # pM’

Ag = MY (m+ kM)

(25)
where p and j are positive integers. Then from Egs. (23) and (24),
and from the periodicity property (6) of the DFT, Fy(m + Mk) =
Fi(m), it follows that

|En (M (m A+ kM) = M| Fog(m + kM)|®
= C(m)M**sin™ (x(m + kM)/M"™9) (26)

whereC'(m) = sin®(xm /M) | Fi(m)|>. For anarbitrary complex
generating vector f; wehave M —1 different valuesof C'(m). If the
power spectrum | F1 (m)|* of the generator iseven, i.e., | Fi (m)| =
|F1(M — m)|, whichisthecasefor real {1, then C'(m) = C(M —
m), and we have only | M /2| different valuesof C'(m).

Let us first consider the set of points.4,. The graph of the
power spectrum defined on this point set behaveslike

|Fa(D)ea, = Cm)sin™2(xl/M"). 27)

It is easy to see that it contains a number of affine branches that
correspond to the different valuesof C'(m) .

Let us now consider the set of points.4;. The graph of the
power spectrum defined on the point set .4, is similar to the graph
defined on the point set 4o, except for the coefficient M 2:

|Pn(l)fes, = M?C(m)sin™(zl/M""). (28)

If we continue the procedure of subdividing the discrete frequency
number into the point sets.4, correspondingto the different values
of ¢, wewill find out that the power spectrum consistsof (n —1) x

(M — 1) similar branches that behave as sin™>(wl/M™~9). For
thegenerator with an even power spectrum, the number of branches
reducesto (n—1) x | M /2]. Figure 4 showsthe power spectrum of
the additive vector that was represented in Fig. 3, with logarithmic

scalesfor both coordinates. The graph displays different branches
whosenumber dependson thelevel r. of the additive vector and the
size M of the generator. Note that the number of points belonging
to the set .4, decreaseswith increasing q, ascan be seenin Fig. 4.

4. CONCLUSIONS

We have derived the expressions for the DFT of n'"-generation
multiplicative and additive signalsin terms of the DFT of the gen-
erating vectors and we have investigated the main features of the
power spectra. In spite of the rather different form of the multi-
plicative and additive signals, as can be seenin Figs. 1 and 3, their
DFTs exhibit a similar property of self-affinity. Thusthe DFT of
the n'"-generation signal f,, at the decimated pointsi = pM,
where M is the size of the generator f; and p is an integer, cor-
respondsto the DFT of the (n — 1)*"-generation signal f,,—; mul-
tiplied by a constant, equal to £ (0) and M for the multiplicative
and the additive case, respectively. Finally we remark that the self-
affinity of such types of signals makesthem attractive for the dif-
ferent applications discussedin [5].
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