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ABSTRACT

The discrete Fourier transform of signals constructed through mul-
tiplicative and additive iterative procedures is determined and its
specific features are considered. It is shown that – in spite of the
rather different structure of multiplicative and additive signals – the
Fourier transforms of both types of signals exhibit the property of
self-affinity. The power spectra of additive signals produced by dif-
ferent generating vectors have similar forms and can be divided into
similar branches. The number of branches depends on the genera-
tion level and the symmetry of the power spectrum of the generat-
ing vector.

1. INTRODUCTION

Numerous objects in science and engineering arising in many nat-
ural phenomena (e.g., turbulence, fluid mixing, aggregation) ex-
hibit a fractal or multifractal structure [1]. The typical property of
such objects is that they are infinitely complex: a small portion of
it is, in a certain way, similar to the original. In signal processing,
some types of noise can be treated as fractal structures [2]. More-
over, fractal signals, which keep their main characteristics under
time and frequency scaling, promise to be important for commu-
nications and for many other applications [3, 4, 5].

Multifractal structures are frequently associated with cascade
processes, and their models are generated through iterative proce-
dures [6, 7]. Real-world fractal structures usually exhibit their self-
affine properties only for a certain number of scales and are de-
scribed in the model by the finite number of iterations n. In this
paper we consider discrete signals, denoted by a row vector fn and
constructed from a generating vector f1 of sizeM ,

f1 = [f1(0); f1(1); : : : ; f1(m); : : : ; f1(M � 1)] (1)

with f1(m) 2 C , through the following iterative procedures:

fn =

2
664

[fn�1]
t � f1(0)

[fn�1]
t � f1(1)

...
[fn�1]

t � f1(M � 1)

3
775
t

; (2)

where the symbol� stands for multiplication and summation in the
multiplicative and the additive case, respectively. A signal of level

n: fn = [fn(0); fn(1); : : : ; fn(m); : : : ; fn(M
n � 1)] has Mn

elements. Its coordinates can be written as

fn(k+Mn�1m) = f1(m)� fn�1(k); (3)

where k = 0; 1; : : : ;Mn�1 � 1 andm = 0; 1; : : : ;M � 1. It can
be shown (see [8] for the case of additive vectors) that

fn(m+Mk) = fn�1(k)� f1(m): (4)

Equations (3) and (4) reveal the fractal structure of these signals.
The affine transformation of the nth-generation signal fn produces
the similar structure corresponding to the (n�1)th-generation sig-
nal fn�1.

In this paper we derive the expression for the discrete Fourier
transform (DFT) of multiplicative and additive signals, which re-
flects the hierarchial structure of such signals. The specific features
of the power spectra of these signals are considered and are eluci-
dated by some particular examples.

2. MULTIPLICATIVE SIGNALS

We start from the consideration of the signals fn generated by the
multiplicative iterative procedure (2). Such types of multiplica-
tive cascades for a real positive generator are used for producing
multiplicative measures appearing in a variety of natural phenom-
ena [6]. As an examples, it is easy to see that the generator f1 =
(1; 0; 1) produces the well-known triadic Cantor set [1]. Figure 1
shows a graphical representation of the multiplicative vector mag-
nitude jfn(l)j for n = 10, generated by the complex vector f1 =
(1; 0; 3 + 2i). Note also that a generating vector with only one
nonzero element produces a multiplicative signal with also only
one nonzero element.

The discrete Fourier transform (DFT) of a sequence fn =
[fn(0); fn(1); : : : ; fn(m); : : : ; fn(M

n � 1)] is given by [9]

Fn(l) =

Mn�1X
k=0

fn(k) exp
�
�
i2�lk

Mn

�
; (5)

where l is an integer. It is well known that the DFT of a sequence
which containsMn points, is periodic with periodMn:

Fn(l+Mnk) = Fn(l): (6)

Therefore we will investigate the structure of Fn in the region l 2
[0;Mn � 1].
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Figure 1: Magnitude of the multiplicative signal of level 10,
constructed by the generator f1 = (1; 0; 3 + 2i).

Substituting from Eq. (3) into Eq. (5) we get

Fn(l) =

Mn�1�1X
k=0

fn�1(k) exp
�
�
i2�lk

Mn

�

�

M�1X
m=0

f1(m) exp
�
�
i2�lm

M

�

= F1(l)

Mn�1
�1X

k=0

fn�1(k) exp
�
�
i2�lk

Mn

�
; (7)

where F1(l) is the DFT of the generator f1. Since

Fn�1

�
l

M

�
=

Mn�1
�1X

k=0

fn�1(k) exp
�
�
i2�lk

Mn

�
corresponds to the DFT of fn�1 at the points l=M , Eq. (7) can be
expressed in the form

Fn(l) = Fn�1(l=M)F1(l): (8)

Using the periodicity of the DFT, F1(l +Mk) = F1(l), one
finds that the DFT of fn at the M -decimated point set fMk j k =
0; 1; : : : ;Mn�1 � 1g corresponds to the DFT of fn�1 multiplied
by F1(0):

Fn(Mk) = Fn�1(k)F1(0): (9)

This relationship, together with Eq. (4) for m = 0, fn(Mk) =
fn�1(k)f1(0), indicates the self-affine structure of the multiplica-
tive signals in the frequency and the time domain. Iterating Eq. (9)
then yields for p = 1; 2; : : : ;Mn�q � 1:

Fn(M
qp) = F q

1 (0)Fn�q(p): (10)

Continuing the iterative procedure (8) we derive the expression
for the DFT of fn:

Fn(l) =

n�1Y
k=0

F1(l=M
k) (11)
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Figure 2: Power spectrum of the multiplicative signal of level 10,
constructed by the generator f1 = (1; 0; 3 + 2i).

with

F1

�
l

Mk

�
=

M�1X
m=0

f1(m) exp
�
�
i2�lm

Mk+1

�
:

In particular for l = 0 we get

Fn(0) = Fn
1 (0) =

 
M�1X
m=0

f1(m)

!n

: (12)

From Eq. (11), the hierarchial structure of the DFT of the multi-
plicative signal can easily be seen: the DFTs of levels n and n� 1
are connected as

Fn(l) = Fn�1(l)F1(l=M
n�1): (13)

The power spectrum of fn is a product of power spectra of f1,
defined at the fractional points:

jFn(l)j
2 =

n�1Y
k=0

��F1(l=Mk)
��2 : (14)

If the power spectrum is represented on logarithmic scales, it takes
the form of a sum of n periodic functions with periods logM ,
2 logM ,...,n logM . This produces quasiperiodicity of the loglog
graphic of the power spectrum, where the number of quasiperiods
in the region corresponding to [0;Mn�1] equals n�1. Note also
that the power spectrum of signals constructed from a generating
vector with only one nonzero element is a constant vector.

Let us consider the generalized triadic Cantor set constructed
from the generator f1 = (p; 0; q), where p = jpj exp(i') and q =
jqj exp(i ). For the power spectrum of f1 at the fractional points,
which defines the power spectrum of all signals jFn(l)j

2 as we can
see from Eq. (14), we have

���F1 � l

3k

����2 = jpj2+jqj2+2 jpqj cos
�
2
2�l

3k+1
+ '�  

�
: (15)



Figure 2 shows the power spectrum of the multiplicative vector that
was represented in Fig. 1 (p = 1; q = 3 + 2i), with logarithmic
scales for both coordinates. One can easily extract the typical struc-
ture which repeats itself with different scale resolutions in n�1 =
9 frequency regions. In the particular case jpj = jqj, Eq. (15) re-

duces to
��F1(l=3k)��2 = 22 jpj2 cos2

�
2�l=3k+1 + ('�  )=2

�
,

and the power spectrum of the Cantor sequence has the following
form:

jFn(l)j
2 = 22n jpj2n

n�1Y
k=0

cos2
�

2�l

3k+1
+
'�  

2

�
: (16)

Thus, for the following generators f1 = (1; 0; 1), f1 = (1; 0;�1),
and f1 = (1; 0; i), which produce Cantor sequences with the same
energy distributions jfnj, we have

jFn(l)j
2 = 22n

Qn�1

k=0
cos2

�
2�l=3k+1

�
;

jFn(l)j
2 = 22n

Qn�1

k=0
sin2

�
2�l=3k+1

�
; and

jFn(l)j
2 = 22n

Qn�1

k=0
cos2

�
2�l=3k+1 + �=4

�
;

respectively.

3. ADDITIVE SIGNALS

Let us consider the signals constructed through the additive proce-
dure (2), which was used for the generation of so-called fractrices
introduced recently [8]. Figure 3 shows a graphical representation
of the additive vector magnitude jfn(l)j for n = 10, constructed
from the same complex generator f1 = (1; 0; 3 + 2i) which was
used for the generation of the multiplicative vector in Fig. 1.

Let us derive some relationships for the DFT of the additive
vector fn for different iterations. It is easy to see from Eqs. (3) and
(5) that

Fn(0) =

Mn�1�1X
k=0

M�1X
m=0

[fn�1(k) + f1(m)]

= MFn�1(0) +Mn�1F1(0); (17)

which, after n iterations, yields

Fn(0) = nMn�1F1(0): (18)

Substituting from Eq. (3) into Eq. (5) we get

Fn(l) =

Mn�1
�1X

k=0

fn�1(k) exp
�
�
i2�lk

Mn

�
S1

+

M�1X
m=0

f1(m) exp

�
�
i2�lm)

M

�
S2; (19)

where

S1 =

M�1X
m=0

exp
�
�
i2�lm

M

�
=

�
M if l = pM
0 if l 6= pM

(20)
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Figure 3: Magnitude of the additive signal of level 10, constructed
by the generator f1 = (1; 0; 3 + 2i).

and

S2 =

Mn�1�1X
k=0

exp
�
�
i2�lk

Mn

�

=

8><
>:

Mn�1 if l = 0
0 if l = pM; p 6= 0
exp(�i�l=M)

exp(�i�l=Mn)

sin(�l=M)

sin(�l=Mn)
if l 6= pM;

(21)
with integer p. Then one finds that the DFT of fn at the M -
decimated point set fMp j p = 1; 2; : : : ;Mn�1� 1g corresponds
to the DFT of fn�1 multiplied byM :

Fn(Mp) = M

Mn�1�1X
k=0

fn�1(k) exp
�
�
i2�kMp

Mn

�
= MFn�1(p): (22)

Therefore the DFTs of additive signals exhibit a similar property
of self-affinity as the DFTs of the multiplicative ones [see Eq. (9)].
Iterating Eq. (22) then yields for p = 1; 2; : : : ;Mn�q � 1:

Fn(pM
q) =MqFn�q(p): (23)

In particular, the DFT of a fractal vector fn for l = pMn�1

produces the DFT of the generating vector f1: Fn(pMn�1) =
Mn�1F1(p) (p 6= 0) and Fn(0) = nMn�1F1(0).

From Eqs. (17)-(21), it follows that the DFT of fn constructed
with a generator of size M is given by

Fn(l)=

8><
>:
MFn�1(0) +Mn�1F1(0) l = 0
MFn�1(p) l = pM; p 6= 0
exp (�i�l=M)

exp (�i�l=Mn)

sin(�l=M)

sin(�l=Mn)
F1(l) l 6= pM:

(24)
Let us now consider the powerspectrum jFn(l)j

2 of an additive
vector. In order to analyze its structure, we define the following
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Figure 4: Power spectrum of the multiplicative signal of level 10,
constructed by the generator f1 = (1; 0; 3 + 2i).

subsetsAq of the interval [1;Mn � 1] for q 2 [0; n � 2]

Aq =

8<
:Mq(m+ kM)

������
m 2 [0;M � 1]
k 2

�
0;Mn�1�q � 1

�
m+ kM 6= pM j

9=
; ;

(25)
where p and j are positive integers. Then from Eqs. (23) and (24),
and from the periodicity property (6) of the DFT, F1(m+Mk) =
F1(m), it follows that

jFn(M
q(m+ kM))j2 =M2q jFn�q(m+ kM)j2

= C(m)M2q sin�2
�
�(m+ kM)=Mn�q

�
; (26)

whereC(m) = sin2(�m=M) jF1(m)j2 . For an arbitrary complex
generating vector f1 we haveM�1 different values ofC(m). If the
power spectrum jF1(m)j2 of the generator is even, i.e., jF1(m)j =
jF1(M �m)j, which is the case for real f1, thenC(m) = C(M�
m), and we have only bM=2c different values of C(m).

Let us first consider the set of points A0. The graph of the
power spectrum defined on this point set behaves like

jFn(l)j
2

l2A0

= C(m) sin�2(�l=Mn): (27)

It is easy to see that it contains a number of affine branches that
correspond to the different values of C(m) .

Let us now consider the set of points A1. The graph of the
power spectrum defined on the point setA1 is similar to the graph
defined on the point set A0, except for the coefficientM2:

jFn(l)j
2

l2A1
=M2C(m) sin�2(�l=Mn�1): (28)

If we continue the procedure of subdividing the discrete frequency
number into the point setsAq corresponding to the different values
of q, we will find out that the power spectrum consists of (n�1)�
(M � 1) similar branches that behave as sin�2(�l=Mn�q). For
the generator with an even power spectrum, the number of branches
reduces to (n�1)�bM=2c. Figure 4 shows the power spectrum of
the additive vector that was represented in Fig. 3, with logarithmic

scales for both coordinates. The graph displays different branches
whose number depends on the leveln of the additive vector and the
sizeM of the generator. Note that the number of points belonging
to the set Aq decreases with increasing q, as can be seen in Fig. 4.

4. CONCLUSIONS

We have derived the expressions for the DFT of nth-generation
multiplicative and additive signals in terms of the DFT of the gen-
erating vectors and we have investigated the main features of the
power spectra. In spite of the rather different form of the multi-
plicative and additive signals, as can be seen in Figs. 1 and 3, their
DFTs exhibit a similar property of self-affinity. Thus the DFT of
the nth-generation signal fn at the decimated points l = pM ,
where M is the size of the generator f1 and p is an integer, cor-
responds to the DFT of the (n� 1)th-generation signal fn�1 mul-
tiplied by a constant, equal to F1(0) and M for the multiplicative
and the additive case, respectively. Finally we remark that the self-
affinity of such types of signals makes them attractive for the dif-
ferent applications discussed in [5].
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