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ABSTRACT

In some applications the covariance matrix of the observations is
not only symmetric with respect to its main diagonal but also with
respect to the anti-diagonal. The standard forward-only sample
covariance estimate does not impose this extra symmetry. In such
cases one often uses the so-called forward-backward sample co-
variance estimate. In this paper, a direct comparative study of the
relative accuracy of the two sample estimates is performed. An
explicit expression for the difference between the estimation error
covariance matrices of the two sample estimates is given. The pre-
sented results are also useful in the analysis of estimators based
on either of the two sample covariances. As an example, spatial
power estimation by means of the Capon method is considered. It
is shown that Capon based on the forward-only sample covariance
(F-Capon) underestimates the power spectrum, and also that the
bias for Capon based on the forward-backward sample covariance
is half that of F-Capon.

1. INTRODUCTION

Let fx(t)g be anm-dimensional zero-mean stochastic process
with covariance

R = Efx(t)x�(t)g;

where the superscript� denotes conjugate transpose. A commonly
used sample estimate ofR is

R̂ =
1

N

NX
t=1

x(t)x�(t);

whereN is the number of observed samples. The focus of this
paper is on cases whereR is centro-hermitian(CH), which means
that

R = JR
T
J; (1)

where

J =

2
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Note thatRT = R
c sinceR is hermitian, whereRc denotes the

complex conjugate ofR. WhenR satisfies the CH property in (1)
a natural sample estimate ofR is

R̂FB =
1

2

�
R̂+ JR̂T

J
�
: (2)

In this paper we will study the relative accuracy of the two esti-
matesR̂ andR̂FB of R. In what follows, we will refer toR̂ and
R̂FB as the forward-only and the forward-backward sample covari-
ance matrix, respectively.

2. MOTIVATION

The main application of interest here is array signal processing
(ASP). In ASPx(t) is the output of a sensor array mathematically
described as

x(t) = A(�)s(t) + n(t):

Here,s(t) contains the signals impinging on the array,A(�) is the
m� n array response matrix, andn(t) is noise. The elements of
then-dimensional vector� are the directions to the sources that
emitted the signals ins(t). Typically s(t) andn(t) are assumed to
be independent zero-mean circular Gaussian processes with sec-
ond moments given by:

Efs(t)s�(s)g = P�t;s

Efs(t)sT (s)g = 0

Efn(t)n�(s)g = ��t;s

Efn(t)nT (s)g = 0;

where�t;s is the Kronecker delta. The above assumptions imply
that the covariance ofx(t) is

R = APA
� +�:

Here, we have omitted the dependence ofA on � for notational
simplicity.

In ASP, the sample estimatêRFB in (2) is sometimes also used
whenR is not centro-hermitian. We do not consider such cases
here, as the comparison ofR̂ andR̂FB would then make no sense.
So in what follows we assume thatR is CH. In ASP this happens
if (and practically only if)P is diagonal, that is the signals are
uncorrelated,� is CH, and the (linear) array is symmetric (for
example, a uniform linear array). Typically, one assumes that the
noise isspatiallywhite so that� = �2I; however, we do not make
this assumption here.



It is a well known fact thatR̂ is the unstructured maximum
likelihood estimate (MLE) ofR. It is also known [6] thatR̂FB

is thestructuredMLE of R whenR is CH. For completeness, in
Section 3 we provide a very simple proof of that result.

By the above fact,̂RFB should be more accurate thanR̂. How-
ever, this is a qualitative statement. A more quantitative study of
the accuracies of̂RFB andR̂ does not appear to be available. Per-
forming this study is one of our goals here.

Some indirect studies of̂RFB and R̂ have appeared in [7]
and [4]. More exactly, these authors studied the accuracy of MU-
SIC, ESPRIT, and other similar direction estimates obtained from
R̂ andR̂FB, respectively. Such studies, however, have a lesser in-
terest nowadays for a reason explained next. Statistically efficient
methods are now available for estimating the directions by root-
techniques of the same complexity as root-MUSIC, ESPRIT etc.
(assuming� = �2I, which is anyway required by the methods
of [7] and [4] as well) [2]. These optimal methods yield the same
asymptotic accuracy, regardless of whether they are applied toR̂FB

or R̂. Consequently, for the more recent ASP methods (under the
assumptions made here) the difference between the performance of
R̂FB andR̂ is much less significant than for the earlier approaches
of [4, 7].

Then why are we interested in a detailed comparative study of
R̂FB andR̂? One reason is, of course, that the earlier approaches,
such as those of [4, 7], are still frequently considered, whereas the
newer optimal approach (e.g. [2]) is yet to be widely accepted.
Another reason is as follows. The optimal method of [2] assumes
that the number of signalsn is known/given. To guess the value
of n, a most practical idea is to use a non-parametric estimator,
such as Capon (see, e.g., [8]). The accuracy with which Capon
estimates the signal powers (i.e., the diagonal elements ofP) is of
most importance for estimatingn, and we will look at this aspect
in some detail (see Section 5 and Section 6). Additionally, such
an estimator will also provide initial direction estimates that may
prove useful to the optimal ASP method (indeed, if� 6= �2I, then
in general the optimal method requires a search over the whole
direction space which, in turn, requires initial estimates.) Another
goal of this work is to show that Capon based onR̂FB outperforms
Capon based on̂R, as might be expected (once we have shown
thatR̂FB is more accurate an estimate thanR̂).

3. ML ESTIMATION OF R

The MLE of the centro-hermitian covariance matrixR is given by
the minimizer of the optimization problem

min
R

ln jRj+Tr(R�1
R̂) (3)

subject toR = JR
T
J

whereln is the natural logarithm,j�j denotes the determinant func-
tion, andTr is the trace operator. Note that

Tr(R�1
R̂) = Tr

�
(JRT

J)�1R̂
�

= Tr
�
(RT )�1JR̂J

�
= Tr

�
R
�1
JR̂

T
J
�
;

which implies that we can rewrite the function in (3) as

ln jRj+Tr(R�1 1

2
(R̂+ JR̂T

J)): (4)

Since the minimum of the above function with respect toR, with-
out any constraint, is obtained for

R = R̂FB =
1

2
(R̂+ JR̂T

J); (5)

and since (5) turns out to be CH, it follows that (5) is thecentro-
hermitian MLEofR.

4. ANALYTICAL STUDY OF R̂FB AND R̂

LetLmn be a permutation matrix such that

Lmn vec(X) = vec(XT ); (6)

whereX is anym � n matrix andvec(�) is the vectorization op-
erator [1]. By using (6), the relation in (2) between̂RFB andR̂
can be expressed as follows (sometimes, for simplicity, we omit
the subscripts ofL)

vec(R̂FB) =
1

2
vec(R̂) +

1

2
(J
 J) vec(R̂T )

=
1

2

h
I+ (J
 J)L

i
| {z }

def
= T

vec(R̂); (7)

where we have used the fact thatvec(ABC) =
�
C
T 
A

�
vec(B)

for matricesA; B andC of compatible dimensions. The symbol

 denotes the Kronecker product [1]. In the comparison of the ac-
curacy ofR̂ andR̂FB, we need the covariance ofvec(R̂). Under
the assumption thatfx(t)g is a zero-mean circular independent
Gaussian process, it is well known that

C
def
= Efvec( ~R) vec�( ~R)g =

1

N

�
R

T 
R
�
; (8)

where ~R = R̂ � R. By defining ~RFB = R̂FB � R and making
use of (7), it is easily seen that

CFB
def
= Efvec( ~RFB) vec

�( ~RFB)g = TCT
�

: (9)

In order to study the difference betweenC andCFB in more detail,
we first need some preliminary results. Proofs of these results can
be found in [3].

Result R1. The following two properties hold:

Lmn = L
T
mn (10)

Lkm

�
X
Y

�
=
�
Y 
X

�
Lln; (11)

whereX ism� n andY is k � l.

Result R2. The matrixT defined in(7) is a projection matrix (i.e.,
hermitian and idempotent).

Result R3. If R is centro-hermitian then

TC = CT:

We are now equipped with all results needed to compare the
accuracies of̂R andR̂FB. From (9),R3 andR2 we have

C�CFB = C�TCT� = C(I�T): (12)



Define

M = I�T (13)

and observe that this is a (real-valued) projection matrix sinceT

is so. Moreover, by making use ofR3, R2 and (12) it is seen that

C�CFB =MCM
�

; (14)

which not only shows that

C�CFB � 0 (15)

but also provides an explicit expression for the difference(C �
CFB). Note that the previously derived expression holds in sam-
ples ofany lengthN � 1! A numerical example is given in Sec-
tion 6 to illustrate this more quantitatively.

Remark 1.Note that there is a non-singular transformation from,
e.g.,vec(R̂) to the real and imaginary parts of the independent
elements inR̂. This implies that it is sufficient to compareC and
CFB to assess the relative accuracy ofR̂ andR̂FB.

As an aside, we note that the relation (7) can also be used in
performance analyses even in cases whenR is not CH. However,
the comparative study above is only valid whenR is CH.

5. FORWARD-ONLY AND FORWARD-BACKWARD
CAPON

As an application, we will consider signal power estimation by the
Capon method (see, e.g., [8]). The Capon spatial power spectrum
estimate is given by

�̂(�) =
1

a�(�)R̂�1a(�)
; (16)

wherea(�) denotes a generic column ofA(�) and� is a generic
element of�. The direction estimates are given by the location
of the peaks of the spectrum, and the corresponding power es-
timates are given by the height of the peaks. We will refer to
this method as the forward-only Capon (F-Capon) method. The
forward-backwardCapon (FB-Capon) spectrum is simply obtained
by replacingR̂ in (16) byR̂FB,

�̂FB(�) =
1

a�(�)R̂�1

FB a(�)
:

Let us denote the limiting spectrum by�, i.e.,

�(�) =
1

a�(�)R�1a(�)
:

The Capon spectral estimates are in general biased (unless the
signal-to-noise ratio tends to infinity). In the following, we will
analyze the errorŝ�(�) � �(�) and �̂FB(�) � �(�) due to finite
sample effects. The analysis is valid for a general� and not only
for the true directions etc.. By employing a second-order approxi-
mation of the error̂�(�)��(�) it is possible to show that the bias
for largeN is given by [3]

Ef�̂ � �g =
1�m

N

1

a�R�1a
=

(1�m)

N
�: (17)

Note that the bias is always negative sincem > 1.

The bias for FB-Capon can be obtained by following the same
steps as in the proof of (17). If the structural relations between the
forward-only and the forward-backward cases given in Section 4
are utilized, then it is straightforward to derive the bias expression
for FB-Capon

Ef�̂FB � �g =
1�m

2N
�; (18)

which ishalf that of F-Capon (see (17)). This result for the spatial
Capon spectrum is similar to the result derived in [5] for temporal
spectral estimation by the Capon method.

The asymptotic (for largeN ) variance of�̂ can be shown to
be the same for F-Capon and FB-Capon and given by [3]

Ef(�̂� �)2g = Ef(�̂FB � �)2g =
1

N

1

(a�R�1a)2
=

�2

N
:

(19)

The above results indicate that FB-Capon is to be preferred over
F-Capon due to the smaller bias. In the next section, we provide a
numerical example to illustrate this fact.

6. NUMERICAL EXAMPLES

In this section, we present two simulation examples to illustrate the
theoretical results derived in the paper. We begin with an example
that shows more quantitatively the difference in accuracy between
R̂ an R̂FB. Then we go on and study the Capon estimates in the
second example.
Example 1The data are generated according to the model in Sec-
tion 2. The array is uniform and linear and consists ofm = 5
sensors separated by half of the carrier’s wavelength. Two signal
wavefronts arrive at the array from the directions�1 = �15� and
�2 = 15� measured relative to array broadside. The signal covari-
ance matrix is

P =

�
1 0
0 1

�
:

The noise covariance matrix,�, is a hermitian Toeplitz matrix,
with the first row given by

�
1 0:4 + j0:3 0:1 + j0:07 0 0

�
:

In Figure 1, the difference betweenC andCFB is illustrated for
different data lengths. In the figure,Tr(C) andTr(CFB) are plot-
ted along with the corresponding sample estimates obtained from
1000 independent simulations. It can be seen that the empirical
and the theoretical results are in perfect agreement for allN .
Example 2 In this example, we change the signal and the noise
covariances to

P =

�
10 0
0 1

�
;

� = I:

The other parameters are the same as in the previous example. The
directions�1, �2, and the corresponding powers are estimated by
the F-Capon and the FB-Capon methods. In Figure 2, we show the
“bias” in the power estimates. By bias, we mean the difference be-
tween the average power estimates and their limiting values. The
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Figure 1: Comparison of the accuracies of the forward-only and
the forward-backward sample covariance matrix estimates. The
plot showsTr(C) and Tr(CFB) for different N . The sample
estimates of these quantities obtained from the empirical mean-
square-error matrices are shown by the symbols + and o, respec-
tively.
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Figure 2: Bias of the F-Capon (+) and the FB-Capon (x) power es-
timates versus the sample length. The upper and lower plots corre-
spond to�1 and�2, respectively. The theoretical bias given in (17)
and (18) is shown by the dashed and the solid line, respectively.

sample values shown in Figure 2 are the averages over 1000 inde-
pendent trials. The corresponding theoretical asymptotic bias val-
ues computed by (17) and (18) are also shown in Figure 2. Clearly,
the asymptotic bias analysis in Section 5 gives a good prediction
of the simulation results also for smallN . Note that the results de-
rived in Section 5 are true for fixed�. Here,�̂ is computed at the
direction estimates which are realization dependent, yet the results
apply reasonably well.

The standard deviations of�̂�� and�̂FB�� in the simulation
are similar as predicted by the (asymptotic) result in (19).

One point to be made here is that small peaks in the Capon
spectrum shows up more clearly for FB-Capon than for F-Capon
due to the smaller bias (see Figure 2). The detection of the number
of signals,n, may therefore be easier when using FB-Capon.

7. CONCLUSIONS

We have studied the relative accuracy of the forward-only (R̂) and
the forward-backward (̂RFB) sample covariance matrix estimates.
A simple proof thatR̂FB is the maximum likelihood estimate of a
centro-hermitian covariance matrixRwas given. The main contri-
bution is a quantitative study of the estimation error covariancesC

andCFB of R̂ andR̂FB, respectively. An explicit expression was
given for the differenceC � CFB showing thatR̂FB indeed is a
more accurate estimate than̂R (in cases when the true covariance
matrix is centro-hermitian). We also analyzed the spatial power
spectrum estimation by the Capon method based on eitherR̂ (F-
Capon) orR̂FB (FB-Capon). We showed that the asymptotic bias
for FB-Capon is half that of F-Capon, whereas the asymptotic vari-
ance is the same. Finally, two numerical examples were presented
to illustrate the abovementioned results.
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