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ABSTRACT

The envelope-constrainedfiltering problem is concerned with
the design of a filter such that the noise enhancement is
minimized while the noiseless filter response stays within
an envelope. Naturally, the optimum filter response to the
prescribed input signal tends to touch the output boundaries
at some points. Consequently, any disturbance to the pre-
scribed input signal could result in the output constraints
being violated. In this paper, we formulate a semi-infinite
constrained optimization problem in which the margin of
the constraint robustness of the filter is maximized. Using a
smoothing technique, it is shown that the solution of the op-
timization problem can be obtained by solving a sequence
of strictly convex optimization problems with integral cost.

1. INTRODUCTION

Consider a linear time-invariant (LTI) filter with impulse re-
sponse to process a given input signal which is corrupted by
additive random noise as shown in Figure 1(a). The ob-
jective is to design a filter such that its squaredL2 norm
is minimized while its noiseless output corresponding to a
specified input signal stays within the pre-specified lower
and upper boundaries, see Figure 1(b). The choice of the ob-
jective function is due to the fact that the output noise power
is proportional to the squaredL2 norm of the filter to be de-
signed [3]. Thus the continuous-time envelope-constrained
filtering problem may be posed as follows:

min kuk2

subject to ��(t) �  (t) � �+(t);8t 2 [0;1):

Traditionally, problems of this type were often handled by
least mean square (LMS) approach. However, it is known
that the EC filtering approach is more relevant than the “soft”
LMS approach in a variety of signal processing fields [1, 3,
4].

The EC filtering problem was first posed in early 1970s [3,
4]. Since then, various methods for solving this problem
have been reported in the literatures [3, 8]. Naturally, the
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Figure 1: (a)Block diagram. (b)Pulse shaping envelope.

response of the optimum filter to the prescribed input signal
tends to touch the output boundaries at some points. Con-
sequently, any disturbance to the prescribed input signal or
errors in the implementation of the optimal filter could re-
sult in the output constraints being violated. Thus, it is of
practical importance to address the robustness issue of the
filter in that the minimum distance between the output re-
sponse and the output envelope is maximized.

2. PROBLEM FORMULATION

2.1. EC Filter with Laguerre Bases

Consider the block diagram of the EC filter involving La-
guerre network in Figure 2. The time-domain Laguerre func-
tion with an adjustable polep > 0 is given by

Lp
j (t) =

jX
i=0

�
j

j � i

�
(�2pt)i

i !

p
2pe�pt; j = 0; 1; 2; : : :

It is known that the Laguerre sequencefLp
jg
1
j=0 forms a

uniformly bounded orthonormal basis for the Hilbert space
L2([0;1))(cf. [6]). Thus, anyu(t) 2 L2([0;1)) can be
represented as:u(t) =

P1
j=0 xjL

p
j (t) wherexj =
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Figure 2: An EC continuous-time Laguerre network

j = 0; 1; : : : are the Laguerre-Fourier coefficients. We con-
sider only those filtersuN(t) whose impulse response are
approximated by:uN (t) =

PN�1
j=0 xjL

p
j (t): The corre-

sponding filter output is: N (t) =
R T
0 uN(�)s(t � �)d� =

�T (t)xwhere�T (t) = [�0(t); : : : ; �N�1(t)]. ThenkuNk2 =
x
T
x wherexT = [x0; : : : ; xN�1]. Thus from Figure 2, the

continuous EC filtering problem can be expressed as the QP
problem below:

ProblemP0:

min kxk2 = x
T
x; x 2 <N

subject to ��(t) �  N (x; t) � �+(t);8t 2 [0; T ]:

It is clear that the objective function is strictly convex and
the constraint set is convex. Thus, ProblemP0 admits a
unique optimal solution provided the constraint set is nonempty.
To avoid the trivial solutionuN (t) = 0 (i.e, x = 0N ), we
impose the following assumption.

Assumption 2.1 There exists at least one point in the out-
put mask at which the upper and lower mask boundaries
have the same sign.

2.2. Constraint Robustness Formulation

In this subsection, we present a technique for providing a
guard band on the output mask. For a given filter coefficient
x, let us define�

[�+(x)](t) =  N (x; t) � �+(t) � 0
[��(x)](t) = ��(t)�  N (x; t) � 0:

To quantify the notion of robustness, we define the con-
straint robustness margin as:

�(x) = min

�
min
t
[��+(x)](t);min

t
[���(x)](t)

�
:

The feasible region of ProblemP0 can now be expressed
in terms of the robustness margin as:F = fx 2 <N :
�(x) � 0g:Note that if�(x) > 0, the minimum distance of
the output N (x; t) from the output mask is at least equal
to �(x). Therefore, we say that the filteruN is robust with
constraint robustness margin�(x). In practice, it may be

necessary to have a larger constraint robustness margin over
certain intervals. In this case, a weighting function� can be
used to achieve the purpose. More specifically, we define
the weighted constraint robustness margin as follows:

��(x) = min

�
min
t

[��+(x)](t)

�(t)
;min

t

[���(x)](t)

�(t)

�

where� is a positive continuous weighting function which
is normalized so that it attains a minimum of unity. Then
the EC filtering problem with robustness constraint may be
formulated as the following constrained optimization prob-
lem.

Problem Q:

max ��

subject to ��(t) + �(t)�� �  N (x; t) � �+(t)� �(t)��

kxk2 � (1 + �)kx�k2; �� � 0;8t 2 [0; T ]

where� > 0 is a constant which specifies the allowable
amount of increase of the output noise power andx

� denote
the optimal solution of ProblemP0. Define the feasible re-
gion of EC filtering problem with robustness constraint as
follows:

F�� = fx 2 <N : j N (x; t)� d(t)j � �(t)� �(t)�� ;

kxk2 � (1 + �)kx�k2;8t 2 [0; T ]g (2.1)

whered(t)
4
= �+(t)+��(t)

2 is a desired pulse shape, and

�(t)
4
= �+(t)���(t)

2 is an error tolerance band aboutd(t).
The following proposition characterizes the sensitivity of
the feasible point in the setF�� for different values of�� .

Proposition 2.2
For any given�1� and�2� such thatx�1

�
2 F�1

�
andx�2

�
2

F�2
�
. If 0 < �1� � �2� thenF�2

�
� F�1

�
and kx�1

�
k �

kx�2
�
k.

The above proposition indicates that the optimal�� must
be a bounded positive constant. Otherwise, it is no solu-
tion for problem Q at any finite�� . In addition, a feasible
point can be found to achieve a bigger constraint robustness
margin (i.e, a tighter output mask), but at the expense of the
increased noise gainkxk2. Thus, there is always a com-
promise between the tightness of the output mask and the
output noise gain of the filter.

3. ROBUST ENVELOPE-CONSTRAINED FILTER

Consider Problem Q. Let the constraint be defined as:(
g1(x; tj��)

4
= �(t)�� �  N (x; t) + ��(t)

g2(x; tj��)
4
= �(t)�� +  N (x; t)� �+(t):



Clearly, for a given�� � 0, g1(x; tj��) andg2(x; tj��) sat-
isfy the following conditions:
i) gj(x; tj��), j = 1; 2, are continuous int 2 [0; T ], and for

eachx, @gj(x;tj��)
@t

is piecewise continuous int 2 [0; T ] ;
ii) gj(x; tj��), j = 1; 2 are continuously differentiable with
respect tox for almost allt 2 [0; T ].

Finding the maximum�� that solves Problem Q is equiv-
alent to finding the maximum�� for which the setF�� re-
mains non-empty. Thus, we can start with�� and check if
the corresponding setF�� remains nonempty. If it does, we
can increase the value of�� and repeat the process. On the
other hand, if the setF�� becomes empty for a given�� ,
it follows from Proposition 2.2 that the value of�� should
be reduced. To check the feasibility of the setF�� , we use
the idea reported in [5] for functional inequality constraints.
We construct the following constraint convex optimization
problem.

Problem SQ:

min

�
J�(x) =

R T
0

�
��(g1(x; tj��)) + ��(g2(x; tj��))

�
dt

�
subject tokxk2 � (1 + �)kx0k2

where��(�) is defined by

��(gj) =

8><
>:

0 if gj < ��
(gj+�)

2

4� if � � � gj � �

gj if gj > �

Note that��(gj) possess the following properties:
i) ��(gj) is once continuously differentiable and piecewise
twice continuously differentiable.
ii) ��(gj) is convex and monotonically non-decreasing.

From Propositions 3 and 4 of [5] which establish the neces-
sary and sufficient conditions for feasibility of the setF�� ,
it is clear that finding a feasible pointx for a given�� is
equivalent to solving Problem SQ. Moreover, Problem SQ is
solvable by any gradient-based quasi-Newton method. The
following algorithm can be used to determine whether a par-
ticular�� is feasible.

Algorithm 3.1 Choose a�� � 0 and an� > 0. At each
iteration of the quasi-Newton algorithm, we insert the fol-
lowing steps for solving Problem SQ:
1. If J�(xk) >

�T
2 then go to step 3; otherwise, go to step 2.

2. Check if the constraints of Problem Q are satisfied. If so,
go to step 4; otherwise, go to step 3.
3. Continue the next iteration of quasi-Newton method to
obtainxk+1 andJ�(xk+1). Setk = k+1, and go to step 1.
4. Stop.xk is a feasible point inF�� .

By means of solving Problem SQ, Problem Q can be eas-
ily solved by using the combination of the golden section
search method [7] and any quasi-Newton method.

Algorithm 3.2 Set��0 = 0, choose a��t > 0, and assign
the iteration accuracies
1 > 0 and 
2 > 0 for �� and
(1 + �)kx�k2 � kxkk2, respectively.
1. Determine ifF��t = ; by Algorithm 3.1.
2. If so, go to step 3; otherwise, set��0 = ��t and��t =
2��t, and then go to step 1.
3. Set
���0 = ��0+(1��)(��t���0); ���t = ��0+�(��t���0)
where� ' 0:618 is the golden section ratio.
4. If F���0 = ;, set��t = ���0 and go to step 6; otherwise,
set��0 = ���0 and go to step 5.
5. If F���t = ;, set��t = ���t and go to step 6; otherwise,
set��0 = ���t and go to step 6.
6. If ��t � ��0 � 
1 and(1 + �)kx�k2 � kxkk2 � 
2, set
��max

= ��0 and stop; otherwise, go to step 3 and replace
k byk + 1.

Theorem 3.3 [9] Algorithm 3.2 is guaranteed to locate the
optimal solution��max

of Problem Q to within a given in-
terval of uncertainty in a finite number of iterations.

4. NUMERICAL RESULTS

In this section, we consider the equalization of a digital
transmission channel involving a coaxial cable operating at
the DSX3 rate (44.736 Mb/s) [2]. The design objective is
to find an equalizer which takes the impulse response of a
coaxial cable with a loss of 30 dB and produces an out-
put which lies within the DSX3 pulse template, see Fig-
ure 3. To have a good representation of the input signal,
the analog input signal is sampled every�32 time unit over
[0; T ]whereT = 32�. The constraint robustness problem is

solved with a weighting function�(t) = �+(t)���(t)
2 where

�+(t) and��(t) are defined in ProblemP0. In our simula-
tion, the following parameters are applied to Algorithm 3.1
and Algorithm 3.2:N = 8, p = 14, kx�k2 = 59:39677,
� = 10�3, ��0 = 0, ��t = 0:1 and� = 1:0, which implies
that we are prepared to accept an additional 100% increase
in output noise power for an improved robustness. The sim-
ulation results are depicted in Figures 4-5. It is clear from
Figure 4 that Algorithm 3.2 is guaranteed to locate the max-
imum constraint robustness margin,��max = 0:3957, in a
finite number of iteration in terms of adjusting�� and sat-
isfing constraints of Problem Q. Figure 5 illustrates that if
it allows more output noise power, then the filter output re-
sponse will be forced to be closer to the desired pulse shape.

5. CONCLUSION

In this paper, the robustness of continuous-time envelope-
constrained filtering problem is studied. A simple yet ef-
ficient algorithm has been proposed to solve the problem
so that the constraint robustness margin is maximized. The



key success to the proposed algorithm is to seek a feasible
point toF�� where0 � �� � ��max

. A smoothing tech-
nique is then applied to solve this problem which converts
the semi-infinite constrained problem into a strictly convex
constrained problem with integral cost.
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Figure 3: The filter output response fits into envelope with
non-constraint robustness.
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Figure 4: The convergence results of the robust envelope-
constrained filtering problem.
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