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ABSTRACT

This paper presents a novel application of Simultaneous Autore-
gressive models to the synthesis of magnetic material images. The
effects of using either symmetric or non-symmetric neighbour sets
upon the visual and statistical properties of the resulting synthes-
ised images are investigated. The use of a neighbour set whose
shape corresponds to the orientations and coarseness of the texture
allows the generation of synthetic images of good quality. Also,
the size of such a neighbour set is usually smaller than that of
the symmetric set required to reach similar modelling accuracy,
thereby minimising the computational effort.

1. INTRODUCTION

Many new magnetic materials (MM) are currently under investig-
ation for use in the ever-growing information storage industry [7],
and important aspects of their properties can be gleaned from their
texture images, which are obtained under different magnetic field
strengths and direction angles by the use of Transmission Elec-
tron Microscopes. It is, therefore, of considerable practical interest
to be able to produce model-based artificial MM images that will
provide (i) a compact way of describing the textures observed ex-
perimentally and (ii) a source of insight into the factors controlling
the textural ripple, from studies of the structure and parameters of
the best fitting models.

Much of the existing work on the statistical modelling of im-
ages has involved Markov Random Field (MRF) models [1, 11,
12], and in particular the simultaneous autoregressive (SAR) model
[4, 6, 10]. This is because the equivalent MRF representation of
a given SAR model is characterised by more parameters, and the
study of SAR models can be extended to include other simultan-
eous models which are not subsets of Markov models [4]. This
paper therefore concentrates on the use of SAR models for MM
image synthesis.

With SAR models it is important to choose an appropriate
neighbourhood structure. Most approaches in the literature use
prescribed fixed-size neighbour sets that are spatially symmetric,
with little if any justification. We investigate the use of non-
symmetric neighbour sets which reflect the underlying orientations

This research is supported by UK EPSRC grant GR/K73114. The
authors are grateful to Professor J. N. Chapman and Mr. Jason King for
providing real microscopy images for use in this work, and to them and to
Professor I. S. Molchanov for helpful discussions.

of the textures of interest. We compare the performances of differ-
ent SAR models using the content similarity based approach [8, 9].

2. SAR MODELS

An observed (MM) imageY = fy(s)g is assumed to be a random
field defined on anM �M lattice
, wherey(s) denotes the grey
level of a pixel at locations = (i; j), i; j = 0; 1; 2; : : : ;M �
1. Also, it is assumed to be stationary, i.e.E[y(s)] = a with
a being a constant. For any sites a neighbour setN is defined.
The neighbour set of a pixel at or near the boundary of an image
is defined by imposing a toroidal lattice structure [4]. The SAR
model, expressed as follows, reflects the fact that the grey level at
a site is associated with the grey levels of its neighbours [4, 6]:

y(s) =
X

r2N

�r y(s� r) +
p
� w(s); s 2 
:

Here,�r, r 2 N , are the model parameters characterising the de-
pendence of a pixel on its neighbours;fw(s)g is Gaussian white
noise with unit variance;� denotes the noise variance; and� de-
notes an operator for addition moduloM in each coordinate.

Given an SAR model, a texture image can be synthesised by
(a) choosing a neighbour set, and (b) estimating the values of the
model parameters�r and�. A conventional least squares (LSQ)
or maximum likelihood (ML) estimation algorithm can be used
for (b); for details of these and the routine for simulating SAR
realisations see [4, 6]. Although it is well known that LSQ can
produce non-consistent estimators for SAR models [4], we tried
both methods, in the knowledge that our MM images are, after all,
not true realisations of the models.

3. SELECTION OF NEIGHBOUR SETS

Symmetric neighbour sets such as square shaped ones are usually
used with SAR or MRF models [1, 6, 13], but the MM images have
rather particular textural characteristics. In displaying the process
of magnetic field reversal, they reveal strong directed ripples, and
our experience with symmetric neighbour sets, even of a moderate
size, e.g.13 � 13 pixels, typically did not produce SAR models
that fitted the data well, as we shall see.

Although one might consider fitting SAR models with ran-
domly generated non-symmetric neighbour sets until a suitable
one is found, the MM images tend to show one or more strong



orientations, and this should be exploited. Our heuristic search
approach for useful neighbour sets was as follows. Given an ori-
ginal image, it is first carefully examined to identify its distinctive
texture shapes. The underlying orientation properties are then ab-
stracted to form the shapes that are subsequently used to constrain
the search. That is, when considering neighbour sets of a particular
size (i.e. number of pixels), only those which satisfy at least one
of the identified shapes are selected. As a result, only a few neigh-
bour sets are tested. Moreover, it turns out that an upper limit on
the sizes of the neighbour sets can be imposed. This enables good
neighbour sets to be found with limited computational effort, and
creates much better synthesised images than those based on sym-
metric neighbour sets.

4. RETRIEVAL OF SYNTHESISED IMAGES

The content similarity based retrieval technique is used to select
the best models. The technique was originally developed to re-
trieve, from a given image database, those images that have the
same or very similar characteristics to those specified in a user
query [8, 9]. To reduce the computational complexity, low-level
statistical features are used to represent images when performing
the retrieval. In our application, the “user query” stands for the ori-
ginal image and the “image database” consists of a corresponding
set of synthesised textures. The image features used to effect the
comparisons are computed using a non-overlapping moving win-
dow, and include: (a) localmean, standard deviationandskewness
features; (b)gradient features, computed by averaging the gradi-
ent values measured in the horizontal and vertical directions using
the Sober operators [2]; (c)fractal features, measured along hori-
zontal,45� diagonal, vertical and135� diagonal directions [5]; and
(d) position features, determined by the coordinates at the centre
of the moving window.

In order to avoid biasing towards particular feature ranges the
features are normalised to zero mean and unit standard deviation.
The synthesised images are ranked on the basis of the Euclidean
distance between the features of the original and those of the syn-
thetic image, via a process of nearest-neighbour search [3].

5. SIMULATION RESULTS

The work reported here focuses on a particular type of MM image
pertaining to the reversal of the free-layer in a permalloy-based
spin-valve [7]. Nine real MM images of a size of128 � 128 with
the grey levels ranging from 0 to 255 are used in this study (Fig. 1).
Although these images are taken from the same area of magnetic
material, they have different visual properties, because of the use
of magnetic fields of different magnitudes. All MM images present
a smooth, rippling texture with marked directionalities.

5.1. Synthesis with Square-Shaped Neighbour Sets

Models were fitted based on five square-shaped neighbour sets, of
sizes3�3, 5�5; 7�7; 9�9 and13�13, and in each case model
parameters are estimated using both the LSQ and ML algorithms.
Thus, for each original image ten (5 � 2) synthetic images, of a
size of128 � 128, are generated. The method of Section 4 led to
the 9 top ranked synthesised images, one per original, presented
in Fig. 2. The caption indicates the corresponding neighbour sets
and the estimation algorithms.

Figure 1: Original MM images

Figure 2: Top most ranked synthesised image per original. Win-
dows (1,1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3,1), (3,2) and
(3,3) are images generated with a square-shaped neighbour set
size of13� 13(ML); 13� 13(LSQ); 7� 7(ML); 9� 9(ML),
5� 5(ML), 5� 5(LSQ), 3� 3(ML) and9� 9(ML), respect-
ively.

Although the synthesised images do reflect, to some extent, the
basic visual properties of their corresponding originals, the overall



comparison of Figures 1 and 2 is not very convincing, even though
some of the models involve many parameters. These results indic-
ate that SAR models with symmetric neighbour sets are not good
candidates for MM image synthesis.

5.2. Synthesis with Texture Orientation Neighbour Sets

To examine the effect of SAR models with non-symmetric neigh-
bour sets, we used the neighbour setsNi; i = 1; 2; 3; :::; 10, shown
in Fig. 3. These sets were selected based on the ripple direction
and coarseness of the MM images, by the method of Section 3. For
example, the shapes of neighbour setsN1 andN7 follow the45�-
diagonal direction that is the main orientation of the MM images
of Figures 1(2,2) and (3,1), and the shapes ofN5 andN9 approx-
imately resemble the ripple shape of the MM images of Figures
1(2,1) and (3,2).

The SAR models with the above neighbour sets are fitted to the
9 real MM images, using both the LSQ and the ML algorithms. A
total of 2 � 10 � 9 = 180 synthesised images are, therefore, pro-
duced. Figure 4 presents the synthetic images using the neighbour
sets given in Fig. 3, based on the original given in Fig. 1(2,2);
for each neighbour set, we show only the better of the two images
obtained using LSQ and ML. Generally speaking, the qualities of

N N N N N1 2 3 4 5

N N N N N6 7 8 9 10

Figure 3: Neighbour set structures. The disk indicates the pixel of
interest and the dark squares indicate the neighbour sets.

these images are much better than those obtained using symmetric
sets. This is revealed in Table 1, which lists those neighbour sets
that have led to the 5 best matched synthesised images for each ori-
ginal MM image, retrieved from an image base consisting of the
2 � 10 synthetic images with non-symmetric sets and the 10 syn-
thetic images with symmetric sets. Amongst 45 (9�5) synthesised
images represented in the table, only five were based on symmetric
neighbour sets. Furthermore, the only one of them that was ranked
first required many more neighbours than the one ranked second
(84 as opposed to 10), whereas the qualities of these two synthes-
ised images are actually very similar. The nine best synthesised
images, one per original, are provided in Fig. 5; for the original of
Fig. 1(1,1) the second ranked synthesised image is treated as the
best for the above reason. In addition, even the less satisfactory
synthesised images based on non-symmetric neighbour sets gen-
erally outperform those using the symmetric sets.

Collectively, the above results indicate that an SAR model is
able to characterise the spatial interaction of the image grey levels
along selected directions. In particular, the structure, i.e. both the
shape and the size, of a neighbour set employed within the SAR
model, plays a major role in the synthesis of MM images. Different

Figure 4: Original and synthesised images using neighbour sets
given in Fig. 3. The original image is shown in window (1,1) and
the synthesised images corresponding to the use of neighbour sets
numbered fromN1 up toN10 are in raster-scan order.

Image 1st 2nd 3rd 4th 5th
Fig. 1 Set 13� 13 N8 7� 7 N6 N10

(1,1) Algor. ML ML ML LSQ ML
Fig. 1 Set N6 13� 13 N2 N5 N3

(1,2) Algor. ML LSQ ML LSQ ML
Fig. 1 Set N1 N5 N1 N10 N9

(1,3) Algor. ML LSQ LSQ ML ML
Fig. 1 Set N9 N3 N9 N7 N4

(2,1) Algori. LSQ ML ML ML LSQ
Fig. 1 Set N1 N1 5� 5 N4 9� 9

(2,2) Algori. ML LSQ ML LSQ ML
Fig. 1 Set N6 N4 N10 N5 N1

(2,3) Algori. LSQ LSQ LSQ LSQ ML
Fig. 1 Set N1 N1 N4 N5 N7

(3,1) Algori. ML LSQ LSQ LSQ LSQ
Fig. 1 Set N8 N4 3� 3 N1 N7

(3,2) Algori. ML LSQ ML ML LSQ
Fig. 1 Set N3 N2 N3 N6 N6

(3,3) Algori. ML LSQ LSQ LSQ ML

Table 1: Neighbour sets and algorithms corresponding to the top 5
synthesised images for each original

neighbour set structures capture different information embedded



Figure 5: Top ranked synthesised image for each original. Win-
dows (1,1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3,1), (3,2) and (3,3)
are images respectively generated with the following neighbour
sets (and the associated estimation method):N8(ML), N6(ML),
N1(ML), N9(LSQ),N1(ML), N6(LSQ),N1(ML), N7(ML) and
N3(ML).

in an original image; some structures are suitable for coarse tex-
tures while others for fine ones. A particular neighbour set should
not be expected to suit a wide variety of textures, though certain
structures may happen to be applicable for a number of different
originals; see the appearance in Table 1 of setN1, whose orienta-
tion resembles those of Figures 1(1,3), (2,2) and (3,1). The choice
of a neighbour set seems more important than the parameter es-
timation method, for our real images. Also, the size of a suitable
non-symmetric set can be much smaller than that of the symmetric
neighbour set required to achieve comparably good synthesis.

6. CONCLUSION

This paper has presented a new application of SAR models for the
synthesis of textures which resemble real-life magnetic material
images. The potential impact is examined of the structure of the
neighbour set used in SAR models. The simulation results demon-
strate that, with the use of a neighbour set structure mirroring the
distinctive ripple in a given MM image, the resultant SAR model
can accurately capture the essential characteristics of the image.
This allows a synthetic image generated from such an SAR model
to have very similar statistical and visual properties to its original.
However, in general, the use of symmetric neighbour sets, even
those of a moderately large size, typically results in synthesised
images of a poor quality. In our future work we shall pursue the
possible implications of this modelling for the understanding and
representation of the underlying magnetic phenomena.
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