
MARKOVIAN HIGH RESOLUTION SPECTRAL ANALYSIS

Philippe Ciuciu, Jerôme Idier and Jean-François Giovannelli

Laboratoire des Signaux et Systèmes (CNRS�SUPELEC�UPS)
Plateau de Moulon, 91192 Gif-sur-Yvette Cedex, France

ciuciu@lss.supelec.fr, idier@lss.supelec.fr, giova@lss.supelec.fr

ABSTRACT

When short data records are available, spectral analysis is
basically an undetermined linear inverse problem. One usu-
ally considers the theoretical setting of regularization to
solve such ill-posed problems. In this paper, we �rst show
that "nonparametric" and "high resolution" are not incom-
patible in the �eld of spectral analysis. To this end, we
introduce non quadratic convex penalization functions, like
in low level image processing. The spectral amplitudes esti-
mate is then de�ned as the unique minimizer of a compound
convex criterion. An original scheme of regularization to si-
multaneously retrieve narrow-band and wide-band spectral
features is �nally proposed.

1. INTRODUCTION

Spectral analysis can be identi�ed as a linear undetermined
inverse problem, particularly when a few data are avail-
able. The regularization theory [1] is a well-adapted set-
ting to solve such ill-posed problems. Recently, Sacchi et
al. [2] have proposed a nonparametric method for discrete
frequencies spectral estimation. They address this problem
as a Fourier synthesis [3]. Indeed, the unknowns are the
Fourier coe�cients of a sample time series. Since they are
more numerous than the data, Sacchi et al. rely on the
regularization theory to derive a compound criterion com-
posed of two terms: a quadratic and data-driven one and
a penalization one. The trade-o� between these terms is
guaranteed by two hyperparameters. The method proposed
in [2] is well adapted to the estimation of line spectra, since
they introduce a non convex separable penalization term,
which corresponds to an independent Cauchy prior law in
a Bayesian framework. As a consequence, such a spectral
estimation method can retrieve closely spaced sinusoids.

With the same formulation, we address in this paper the
more di�cult spectral estimation problem of discrete time
compound random process (DTCRP): spectrum of DTCRP
is a mixture of narrow-band and wide-band components.
Our approach takes advantage of the regularized interpre-
tation of periodograms [4]. We �rst introduce a strictly
convex separable penalization, which is more resolvant than
the quadratic one. The corresponding cost function is con-
sequently strictly convex and the discrete frequencies spec-
tral estimate is then de�ned as the global minimizer of this
criterion. A Markovian contribution can also be incorpo-
rated to restore smooth spectral components. However, in
the presence of DTCRP, this regularization scheme does not

allow to retrieve narrow-band and wide-band spectral com-
ponents simultaneously. To this end, in a second step, we
derive a new model relating data to unknowns, called the
"mixture model", and we propose a new scheme of regu-
larization. Finally, spectral estimates computed from sam-
ples of a process consisting of sinusoids in colored Gaussian
noise are presented to illustrate the performances of our
techniques.

2. PROBLEM FORMULATION

In our approach, spectral analysis identi�es with a Fourier
synthesis problem [3]. Therefore, the goal is to estimate the
Fourier coe�cients of a time series. Consider a sample time
complex vector x = [x0; : : : ; xN�1]

t. We wish to estimate
P spectral components, with P � N . Let us denote respec-
tively �p = p=P and Xp = X(�p), p 2 f0; 1; : : : ; P � 1g =
NP , the equally spaced discrete frequencies and the cor-
responding spectral amplitudes. Then any sample xn can
be modeled by the inverse discrete Fourier transform of the
sample frequency vector X = [X0; : : : ;XP�1]

t 2 CP :

xn =
P�1X
p=0

Xpe
2j��pn; n 2 NN :

Denoting WNP = [wnp
0 ]p2NPn2NN

the N � P Fourier matrix

where w0 = e2j�=P , the previous relations can be written:

x = WNP X:

In practice, x is not available: observed data y = x + b

are corrupted by modeling and experimental uncertainties.
For the sake of simplicity, the noise b is assumed to be a
zero-mean, circular, stationary, white and Gaussian vector.
Linear relation between the N -sample data vector and the
unknown parameters is:

y =WNP X + b: (1)

Since the estimation relies on a small number of data, sys-
tem (1) is undetermined and therefore can be satis�ed by

any vector cX which minimizes the following least square
criterion:

Q(X) = ky�WNP Xk2 :
Since Q is convex only in wide sense, we introduce an ad-
ditional strictly convex regularization term R(X), to yield
a strictly convex compound cost function J (X). We give
to J the following form:



J (X) = Q(X) + �R(X);
where the regularization parameter � > 0 balances �delity
to the data and �delity to the penalization term. The es-
timator of the spectral amplitudes is well-de�ned as the
unique minimizer of this criterion, that is to say:cX = arg min

X2CP

J (X) ;

and the power spectrum estimator deduces as the square

modulus ofcX. For example, the special case of the quadratic
separable penalization, that is R(X) = XyX, leads to a

low-resolution spectral estimate cX , which is proportional
to the usual periodogram.

3. NON QUADRATIC REGULARIZATION

3.1. Separable penalization

As it is done in image restoration, it can be interesting to
replace a quadratic regularization term by a more resolvant
one. To this end, Sacchi et al. [2] have proposed a penal-
ization term, which corresponds to the choice of a Cauchy
prior law in Bayesian estimation:

R0(x) = ln(1 + x2=�2);
where � controls the amount of sparseness. The following
penalization function encompasses such a possibility:

R (jXj) =
P�1X
p=0

R0 (jXpj) : (2)

Contrarily to Sacchi et al., we have chosen a strictly convex
function for R0. In order to improve spectral resolution,
we assume that R0(x) grows more slowly than x2 for large
values of x.

Convexity of R0 (j:j) implies the one of R (j:j), which en-
sures existence and unicity of a solution in CP for the min-
imization of J . The minimizer is continuous with respect
to (w.r.t.) data. This guarantees the well-posedness of the
regularized problem [1]. Nevertheless, convexity of R0 does
not imply the one of R0 (j:j). Applied to g(X) = jXj and
f(�) = R0(�), the following theorem ensures convexity of
R0 (j:j) for any function R0 which is simultaneously convex
and increasing on R+.

Theorem 3.1 [5, �5]
Let g be a convex function from Rn to R+ and f be a convex
function from R+ to R+, which is increasing. Then h =
f � g is convex on Rn.

"Lp" functions �p (1 6 p < 2), commonly used in im-

age reconstruction [6] and "L21" functions like
p
� + �2,

also used in edge-preserving image restoration [7] satisfy
the conditions of theorem 3.1 and increase more slowly than
the "L2" function �

2. Therefore, R0 is chosen among those
functions.

We now describe the minimization stage of J (X). Sac-
chi et al. [2] have used a procedure closed to the iteratively
reweighted least square (IRLS) algorithm. In this case, the
cost function is not necessarily convex, local minima can
exist and convergence of IRLS to the global minimizer is
not granted. In our case, such a procedure is convergent
since we have chosen a strictly convex penalization term.

Moreover, it can be shown [8] that the IRLS algorithm iden-
ti�es with a block-coordinate descent method, such as AR-
TUR [7], applied to a half-quadratic augmented criterion
KGR, which is built with the Geman & Reynolds's dual-
ity [9]. KGR satis�es:

8X ; inf
b
KGR(X;b) = J (X);

and has the following form:

KGR(X;b) = Q(X) + �

P�1X
p=0

�
bp jXpj

2 +  0(bp)
�
;

where b = [b0; : : : ; bP�1 ]
t 2 RP

+ is an auxiliary process,
and  0 can be de�ned from R0 through convex duality re-
lations (see [9, 7]). In [8], it is shown that KGR is convex
in (X;d =  0(b)) under some technical conditions includ-
ing the convexity of R0. Furthermore, convergence to the

global minimum cX of J is established for several kinds of
coordinate descent methods [8], provided that J is C1 (i.e.,
continuously di�erentiable). In the nonsmooth case (i.e.,
R0 non di�erentiable at 0), convergence is also available for
an appropriately under-relaxed form. Since many versions
of deterministic algorithms that operate on KGR converge

to cX, it is not necessary to perform the minimization of J
with a non di�erentiable optimization algorithm.

3.2. Gibbsian penalization

Separable regularization leads to a signi�cant gain of res-
olution, but it does not favor retrieval of smooth spectral
components (see Fig. 1 (b)-(c)). To strengthen these fea-
tures, a classical technique consists in appending a Gibb-
sian term [10, 6] to R(X). If one processes as in image
restoration, one can add to R0 a penalization on the �rst
di�erences. Since we eventually take interest in restoring
the power spectrum rather than the complex spectral am-
plitudes, we penalize the �rst di�erences of the modulus
rather than those of the amplitudes:

R1 (jXj) = �

P�1X
p=0

R1 (P (jXp+1j � jXpj)) ;

with the circularity constraint: XP = X0; since the sought
spectrum is 1-periodic. By this way, the smoothness of the
power spectrum is ensured. Finally, the total penalization
function is:

R (jXj) =
P�1X
p=0

[R0(jXpj) + �R1(P (jXp+1j � jXpj))]; (3)

where functions R0 and R1 are assumed to be symetric,
convex, increasing and continuously di�erentiable. To en-
sure the strict convexity of the penalization function R, it
is necessary to give a multivariate extension of theorem 3.1:

Theorem 3.2

Let g be a function from R
n to Rm

+ and let f be a con-
vex function from Rm

+ to R+. Suppose moreover that each
component gk of g is convex and that f is a coordinatewise
increasing function everywhere in Rm

+ , then h = f � g is
convex on Rn.

We apply this result to gk (X1;X2) = jXkj for k 2 f1; 2g
and f(�1; �2) = R0(�1) + R0(�2) + 2�R1(P (�1 � �2)). To



conclude that R is convex on CP , one needs to verify the
following increasing coordinatewise inequality:

8�1; �2 > 0; R0
0(�1) > 2�PR0

1(P (�1 � �2)): (4)

A su�cient condition to ensure (4) is
8�2 > 0; R0

0(0) > 2�PR0
1(P�2):

Since R0 is supposed to be increasing, we have:
8 �1 > 0; R0

0(�1) > 0:
If R0

0(0) = 0, R1 must satisfy:
8 �2 > 0; R0

1(�2) 6 0 (� > 0):
This is in contradiction with the above mentioned increasing
hypothesis on R1, except if R1 is a constant function. Nev-
ertheless, this case is not of any interest, hence we forcibly
have R0

0(0) > 0. In other words, the functions R0 which
have a linear behaviour in the neighborhood of 0 ensure the
increasing coordinatewise condition of f on R2

+, and then
the convexity of R on C2. In practice, we have chosen the
following function f to ensure the strict convexity of R:

f(�1; �2) = '(�1) + '(�2) + 2� (P (�1 � �2));

where '(�) = � or '(�) =
p
� + (�+ )2 and  (�) =p

�+ �2. Parameters of f must satisfy 2�P < 1 and

2�P < =
p
� + 2 respectively.

Finally, the strict convexity of the global criterion J
is obtained to the detriment of its di�erentiability at the
origin. Therefore, we emphasize here the fact that usual
e�cient algorithms of minimization, like gradient methods,
do not apply.

If we add to the L1 potential a strictly convex di�eren-
tiable term in R0, the global expression of J allows a suc-
cessful application of a coordinate descent method accord-
ing to [11, theorem 1.4, p. 73]. However, convergence of this
algorithm is very slow. To simplify the minimization task,
we propose a fast alternative based on half-quadratic regu-
larization [12] and alternate deterministic minimizations [7].
Unfortunately, we have not presently brought guaranties of
convergence towards the global minimizer. Nevertheless, we
give the principle of our algorithm.

Introduction of an auxiliary process for the Markovian
term R1 as in Subsection 3.1 yields a quadratic term in the
di�erences of spectral modulus, but not in those of spectral
amplitudes. In [13], it is shown that a multivariate exten-
sion of Geman & Yang's half-quadratic regularization [12]
can solve this problem, provided that two auxiliary vari-
ables are matched to each spectral amplitude. Geman &
Yang exploit Legendre pairs to introduce a new objective
function. Since Legendre pairs [5, �26] are not well de�ned
for non smooth functions, such a procedure does not apply
to R0, whereas the Geman & Reynolds's duality can apply.
The corresponding augmented criterion KGRY satis�es:

8X ; inf
l(+;�)

KGRY(X;b; l(+;�)) = KGR(X;b);

and has the following form:

KGRY(X;b; l(+;�)) = KGR(X;b) + �

P�1X
p=0

�
1

2

h��Xp � l+p
��2

+
��Xp � l�p

��2i+ �1
���l+p ��� ��l�p ���� ;

where (l+; l�) 2 (CP )2 are auxiliary processes, and �1 can
be de�ned from R1 through Legendre transform [12]. To
perform the minimization of J , we have used a strategy
based on alternate minimizations over X, b and l(+;�).

Simulations with a Markovian penalization provide quite
accurate power spectrum estimates for the broad-band por-
tion of DTCRP. By contrast, line spectra are not well re-
trieved (see Fig. 1 (d)). We now focus on the "mixture
model", which takes into account both broad-band and
narrow-band parts of the DTCRP.

4. THE MIXTURE MODEL

We give a new formulation of spectral estimation for the
DTCRP. Since the DTCRP has spectral peaks but also
smooth spectral components, it seems to be relevant to in-
clude these features in the model relating data to unknowns.
To this end, the unknown spectrum X is modeled as the
sum of two terms: one for the narrow-band portion Xn,
and another one for the wide-band component Xw. This
construction leads to the name of "mixture model". Rela-
tion (1) becomes:

y = WNP (Xn +X
w) + b;

and the least square criterion QM is written:
QM(X

n;Xw) = ky �WNP (Xn +X
w)k2 :

Speci�c penalization terms are introduced for both Xn and
Xb. For the narrow-band part Xn, we consider as in (2)
a separable di�erentiable penalization function Rn. In the
same way, for the wide-band portion Xw, we choose as
in (3) a Markovian strictly convex regularization term Rw.
The total "mixture" penalization function combines Rn and
Rw:

RM(X
n;Xw) = �nR

n

(Xn) + �wR
w

(Xw);
where �n; �w > 0 are the hyperparameters. To strengthen
the restoration of line spectra in Xn, we have to choose
�n > �w. Finally, the global "mixture" criterion JM is:

JM(X
n;Xw) = QM(X

n;Xw) +RM(X
n;Xw):

The uniqueness of the minimizer (Xn;Xw) of JM is en-
sured, because pointwise addition of a convex function with
another strictly convex one is strictly convex [5].

An extension of the previous algorithm of optimization
have been used to carry out the minimization of J w.r.t.
Xn andXw. This procedure now requires a more expensive
computational burden than the one of Section 3, but the
accuracy of the results justi�es such a contribution.

5. SIMULATION RESULTS

We illustrate the performances of our spectral estimation
method, using data similar to the Kay-Marple [14] ones.
Each spectral estimate is based on a sequence of 64 complex
sample points extracted from a process consisting of three
sinusoids and a Gaussian colored noise process. The true
power spectral density (PSD) is shown in Fig. 1 (f). The
three sinusoids are at fractional frequencies of -0.3, -0.22
and -0.21 and have SNR's of 0, +20 and +20 dB, where SNR
is de�ned as the ratio of sinusoid power to the total power
in the passband noise process. The Gaussian noise process
passband is zero-mean with standard deviation � = 0:05.
This particular signal is selected to compare our spectral
analysis techniques with both narrow-band and wide-band
processes.

The PSD estimates, pictured in Fig. 1, are obtained
from the minimization of penalized criteria. In each case,
a common hyperparameter to each regularization term is



chosen such that kcXk2 = kyk2. The other parameters are
selected empirically. Each spectral estimate depicted here
is computed using 256 frequency samples. A zero-padded
periodogram is shown in Fig. 1 (a). The nominal resolu-
tion of a 64-point sequence is 0.015, so that the sinusoids at
-0.22 and -0.21 are closer than the resolution width. Two
PSD estimates obtained with di�erent convex separable pe-
nalizations are depicted in Fig. 1 (b)-(c). The second one
is very similar to the spectral estimate computed with the
Cauchy-Gauss model in [2]. Fig. 1 (d) shows the PSD esti-
mate performed by our �rst convex Markovian model (3).
The broad-band response of such a Markovian spectrum is
very accurate. Unfortunately, it is unable to resolve the two
close sinusoids. The Markovian "mixture model" yields the
PSD estimate shown in Fig. 1 (e). It gives more accurate
results than the other known nonparametric methods: the
three sinusoid components have sharp responses at the sinu-
soid frequencies, and the broad-band response is very simi-
lar to that of the single Markovian estimate.

6. CONCLUSION

We have examined the problem of nonparametric spectral
estimation for the DTCRP. We have shown that separable
spectral estimates based on convex penalized criteria pro-
vide a quite accurate narrow-band response. To improve
the quality of the wide-band response, we have introduced
a Markovian penalization in the criterion. In this case, the
closely spaced sinusoids are not resolved whereas the broad-
band component is well retrieved. To avoid such a disadvan-
tage, we have proposed an original model and an adapted
regularization function. Since each estimate is obtained via
the minimization of a convex criterion, it is computed by
an optimization procedure. We have used a fast algorithm,
whose convergence to the global minimizer is only granted
in the separable case.
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Figure 1: Zero-padded periodogram (a) and non quadratic
extensions: (b) separable penalization with L21 po-
tential ; (c) separable penalization with L1 poten-
tial ; (d) Markovian penalization on the modulus �rst dif-
ferences ; (e) Markovian penalization with the "mixture"
model ; (f) True PSD.


