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ABSTRACT

In this paper, we investigate the feasibility of characterizing
signi�cant image edges using a model-based neural network
with modular architecture. Instead of employing traditional
mathematical models for characterization, we ask human
users to select what they regard as signi�cant features on
an image, and then incorporate these selected edges directly
as training examples for the network. Unlike conventional
edge detection schemes where decision thresholds have to
be speci�ed, the current NN-based edge characterization
scheme implicitly represents these decision parameters in
the form of network weights which are updated during the
training process. Experiments have con�rmed that the re-
sulting network is capable of generalizing this previously
acquired knowledge to identify important edges in images
not included in the training set. Most importantly, the cur-
rent approach is very robust against noise contaminations,
such that no re-training of the network is required when it
is applied to noisy images.

1. INTRODUCTION

In this paper, we investigate the feasibility of characterizing
signi�cant image features using model-based neural network
through human-supplied training examples, instead of em-
ploying traditional mathematical models. As a �rst step,
we consider the problem of the characterization of edges,
which is usually regarded as signi�cant image features by
humans.

The primary aim of edge characterization is to locate
and model those image pixels with signi�cant change in in-
tensities [1] . The process is usually divided into two stages:
in the �rst stage, we de�ne measures which characterize
the dissimilarity of the current pixel with respect to the
surrounding pixels. Typical examples of these include the
Prewitt and the Sobel operators [1] . The second stage is
a decision process on the resulting edge magnitudes which
distinguishes the signi�cant edges from the non-edges.

It is the proper selection of the decision criterion in the
latter stage that the current work is addressing. In simple
edge detection, a global threshold is usually interactively
chosen to produce a �nal binary edge map. More sophis-
ticated approaches, including the Canny [2] and the Shen-
Castan [3] edge detectors, employ an expanded threshold
set in the so-called hysteresis thresholding operation, where
a minimum and maximum threshold is speci�ed for edge
linking. In addition, accurate location of edges usually re-

quires some form of Laplacian of Gaussian (LoG) �lter-
ing [1] thus requiring the speci�cation of �lter width pa-
rameters . This, together with the previous thresholding
parameters, gives rise to a large variety of possible param-
eter combinations, each of which will correspond to a very
di�erent �nal edge map.

In view of this, a logical choice for a proper representa-
tion of these parameters would be in the form of connection
weights in a neural network [4] . We would implicitly spec-
ify the edge detection parameters by tracing out what we
regard as signi�cant edges in an image, and we will use them
as training inputs for the network. Adopting a model-based
network architecture [5, 6], it is expected that the network
will be capable of generalizing this acquired knowledge to
identify novel feature types similar to those in the training
set.

Along this direction, we have developed a model-based
neural network for edge characterization based on the de-
cision based modular architecture proposed by Kung and
Taur [6] . Conforming with the above formulation, the
connection weights of the network encode both the edge-
modelling parameters in the �rst high-pass �ltering stage
in edge detection, and the thresholding parameters in the
second decision process. As a result, explicit speci�cation
of threshold parameters are avoided in favour of implicit pa-
rameter speci�cation in the form of human-supplied train-
ing examples.

2. NETWORK ARCHITECTURE

The edge characterization NN is modelled after the decision-
based modular architecture proposed by Kung and Taur [6]
. This architecture is composed of a hierarchical structure
consisting of clusters of neurons forming sub-networks . In
the training stage, each sub-network will encode di�erent
aspects of the training set, and in the recognition stage an
arbitration process is applied to the outputs of the various
sub-networks to produce a �nal decision.

The motivation of our adoption of this architecture is
due to our observation that, in edge detection, it would be
more natural to adopt multiple sets of threshold parameters
and apply the appropriate set of parameters depending on
the local context, instead of just adopting a single parame-
ter set across the whole image. As an example, we can con-
sider the visibility of an edge with a certain strength under
di�erent background gray level values. Within a brightly lit
background, the visibility of even relatively weak edges is
enhanced compared with edges of similar strengths in dark



backgrounds. As a result, we will possibly consider the for-
mer as signi�cant but not the latter, and we have to adjust
the thresholds accordingly.

The modular decision-based architecture thus consti-
tutes a natural representation of the above adaptive deci-
sion process if we designate each sub-network to represent a
di�erent background illumination level, and each unit in the
sub-network to represent di�erent prototypes of edge-like
features under the corresponding illumination level. The
various hierarchies in the network are explained below.

2.1. Sub-Network Gr

For each image pixel, we consider the neighboring pixels
in a 3�3 window with corresponding gray level values x =
[x1 : : : x9]

T and mean x. We associate each sub-network
Gr; r = 1; : : : ;m with a prototype background gray-level
value gr, and assign all those windows with their average
values x close to gr to the sub-network Gr . This is in ac-
cordance with our previous assertion that the perception of
edge-like features will in general vary with the local con-
text, so that adaptive processing with respect to di�erent
illumination levels are required. Speci�cally, a particular
window is assigned to the sub-network Gr� if the following
condition is satis�ed

jx� gr� j < jx� grj r = 1; : : : ;m; r 6= r
� (1)

In this way, we partition the set of all 3 � 3 windows in
the image into clusters, with all members in a single cluster
exhibiting similar levels of background illumination. The
operation of this sub-network assignment process is illus-
trated in Figure 1.
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Figure 1: The architecture of the model-based neural net-
work for edge characterization

2.2. Neuron Nrs in Sub-Network Gr

Each sub-network Gr contains n neurons Nrs; s = 1; : : : ; n,
with each neuron encoding the various di�erent edge proto-
types which can exist under the general illumination level
gr. We associate each neuron with a weight vector wrs =

[wrs;1 wrs;2]
T 2 R2, which serves as a prototype char-

acterizing the two dominant gray values in each 3�3 win-
dow. De�ning the vector m = [m1 m2]

T for each window
, where m1(m2) is the mean of all those pixels with gray
values less(greater) than x, we assign a certain window with
corresponding vector m to the neuron Nrs� if the following
condition is satis�ed

km�wrs�k < km�wrsk s = 1; : : : ; n; s 6= s
� (2)

In this work, we have chosen n = 2 in order that one
of the neurons will encode the prototype for weak edges
and the other will encode the strong edges. This is deter-
mined according to the di�erence between the components
wrs;2�wrs;1 of the weight vector. We will designate the vec-
tor with the greater(smaller) di�erence as the strong(weak)
edge prototype . The weak edge prototype plays a similar
role as the threshold parameter in conventional edge detec-
tion algorithms in specifying the lower limit of visibility for
edges. The operation of the neuron assignment process is
illustrated in Figure 2.

Nr1 Nr2

m1 m2

s*

Gr

x

Pre-processing

Select Winner

Figure 2: The architecture of a single subnetwork Gr

2.3. Binary edge con�guration

Suppose that the vector m for the current window is as-
signed to neuron Nrs with weight vector wrs. We can now
de�ne a binary vector b = [b1 : : : b9]

T with each compo-
nent bi determined according to the corresponding window
component xi as follows

bi(xi;wrs) =

�
0 if jxi �wrs;1j < jxi �wrs;2j
1 if jxi �wrs;1j � jxi �wrs;2j

(3)

The binary vector b assumes a special form for valid edge
con�gurations. Some of the possible valid edge con�gura-
tions are shown in Figure 3.
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Figure 3: Examples of valid edge con�gurations



3. NETWORK TRAINING

The training of the network proceeds in three stages: in the
�rst pass, we determine the prototype illumination level
gr; r = 1; : : : ;m for each sub-network Gr by competitive
learning [4].

gr�(t+ 1) = gr�(t) + �(t)(x� gr�(t)) (4)

where Gr� is the winning sub-network corresponding to x.
In the second stage, we assign each window to its corre-
sponding sub-network and then determine the weight vec-
tors wrs, again using competitive learning.

wrs�(t+ 1) = wrs�(t) + �(t)(m�wrs�(t)) (5)

where Nrs� is the winning neuron corresponding to m. In
the third stage, we assign each window to its corresponding
neuron in the correct sub-network, extract the correspond-
ing binary edge con�guration pattern b as a function of the
winning weight vector wrs, and insert these patterns into
an edge con�guration memory C.

4. RECOGNITION PHASE

In this stage, we consider all 3�3 windows in the image and
assign each of them to their corresponding sub-network Gr

and neuron Nrs. A particular pixel is considered a pri-
mary edge point if the component di�erence m2�m1 of its
associated vector m is greater that of the weak edge proto-
type vector . In the second stage, we locate all secondary
edge points connected to the previous primary edge points.
Both edge types are validated by checking the presence of
their corresponding binary vector b in the edge con�gura-
tion memory C.

5. EXPERIMENTAL RESULTS

We applied the NN-based edge characterization scheme to a
number of images. One of them depicting an eagle is shown
in Figure 4(a). We traced out some edges which we regard
as signi�cant in Figure 4(b). The detected edges using the
current method are shown in Figure 4(c).

Comparing Figure 4(c) with Figure 4(b), we can im-
mediately appreciate the generalization capability of the
model-based NN: starting just from the training examples
in Figure 4(b), the network is able to locate all the impor-
tant edges as perceived by human beings, and the result is
a valid caricature of the original image.

The performance of the model-based NN was validated
further by comparing the result with that of a standard
edge detector. We chose the Shen-Castan edge detector [3]
for comparison. The associated parameters of this detec-
tor include the �lter width parameter a and the hystere-
sis thresholds t1; t2. There are a large number of possible
combinations between these parameters. We expect that,
among those combinations, the result of the model-based
NN will be close to those with their resulting edge pro�les
resembling faithful caricatures of the original images.

In Figure 4, we compared the result of the current scheme
with the Shen-Castan edge detector under various hystere-
sis thresholds. The result of the model-based NN is shown

in Figure 4(c) and the results for the Shen-Castan edge de-
tector are shown in Figure 4(d) to 4(f). In general, lower
values of t1 and t2 will reveal more details but at the same
time cause more false positive detections (Figure 4(d)) . On
the other hand, higher thresholds will lead to missed edges
(Figure 4(f)). In our opinion, Figure 4(e), with t1 = 20
and t2 = 25, constitutes an adequate representation of the
underlying edges of the image. Comparing with the current
approach in Figure 4(c) , we can see that the edges detected
by NN are similar to those under near optimal settings of
the threshold parameters, but the important point is that
the NN detector directly acquires the appropriate param-
eter settings through human-speci�ed features without the
need for trial and error.

More importantly, the current approach is very robust
against noise contaminations. Figure 4(g) shows the result
of applying the same network, without any re-training, to
the eagle image corrupted with zero-mean Gaussian noise
(�n = 10). We can observe that the result is very sat-
isfactory. On the other hand, using the previous optimal
thresholds, we can readily notice the e�ect of the noises for
the Shen-Castan edge detection result (Figure 4(h)), and
we have to re-adjust the thresholds to eliminate its e�ects
(Figure 4(i)).

6. CONCLUSION

We have developed a model-based neural network for edge
characterization which directly assimilates the essential char-
acteristics of human-speci�ed edge examples through learn-
ing. The speci�c architecture of the network divides the
training examples into sub-classes which reect the di�er-
ent preferences of human beings in regarding intensity dis-
continuities as signi�cant under di�erent illumination con-
ditions. In addition, the current model-based NN implicitly
represents the decision parameters in the form of network
weights which are updated during the training process, thus
requiring no explicit threshold parameter speci�cations as
in conventional edge detection algorithms. In particular,
no re-training of the network is required for applying the
network to noisy images.
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Figure 4: (a) Eagle image (b) Edges speci�ed by humans (c) Detected edges using NN. (d)-(f) Detected edges using
Shen-Castan edge detector with di�erent hysteresis thresholds t1, t2 (�lter parameters a = 0:3) (d) t1 = 10; t2 = 15. (e)
t1 = 20; t2 = 25. (f) t1 = 40; t2 = 45. (g) Detected edges using NN under zero-mean Gaussian noise (�n = 10) (h)-(i)
Detected edges using Shen-Castan edge detector under zero-mean Gaussian noise (�n = 10) (h) t1 = 20; t2 = 25. (i)
t1 = 25; t2 = 30.


