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ABSTRACT
Digital waveguide modeling of a nonlinear vibrating string is
investigated when the nonlinearity is essentially caused by ten-
sion modulation. We derive synthesis models where the nonline-
arity is implemented with a time-varying fractional delay filter.
Also, conversion from a dual-delay-line physical model into a
single-delay-loop model is explained. Realistic synthetic tones
with nonlinear effects are obtained by introducing minor amend-
ments to a linear string synthesis algorithm. It is shown how
synthetic plucked-string tones are modified as a consequence of
tension modulation. Examples of synthesized tones are available
at http://www.acoustics.hut.fi/~ttolonen/sounddemos/tmstr/.

1. INTRODUCTION
In physical modeling of plucked and struck string instruments,
the vibration of a string is typically simulated with a linear sys-
tem, such as a digital waveguide model [9], [3]. However, a
vibrating string is linear only to a first approximation, and conse-
quently, nonlinear phenomena exhibited by every real string,
such as the modulation of string tension, are inherently omitted
in these simulations. Perceptually, the two most important phe-
nomena caused by tension modulation are the pitch variation
depending on the vibration amplitude and the generation of
missing harmonics due to nonlinear coupling of the vibration
modes. While the nonlinearity has been studied both analytically
and experimentally [1], [6], [5], to our knowledge the only syn-
thesis model of a vibrating string incorporating tension modula-
tion has been proposed by Karjalainen et al. [2], who used a
memoryless nonlinearity. Synthesis models have been presented
previously for a nonlinearly terminated string [8] and for the
trombone where nonlinear wave propagation takes place [7].
Recently, we showed that these two cases can be generalized to
signal-dependent nonlinearities that can be implemented using a
time-varying fractional delay (TVFD) filter with a signal-
dependent delay parameter [11].

In this paper, we first discuss the nonlinear string in Section 2
where we also show analysis results of recorded guitar tones. In
Section 3, we propose a new digital waveguide synthesis model
for the nonlinear string, which utilizes the TVFD structure. We
also present a computationally efficient implementation structure.
In particular, we show that with little compromises in the simu-
lation accuracy, we may obtain a single-delay-loop model that is
much cheaper in terms of computational complexity than the
dual-delay-line model. In Section 4, we illustrate by synthesis
examples that our nonlinear string simulation produces synthetic
tones which are more realistic than those produced with linear
models.

2. NONLINEAR STRING VIBRATIONS

2.1 Tension Modulation
The primary cause of the nonlinearity of a vibrating string is the
modulation on the string length; any transversal displacement of
the string results in an increase to its length. We consider one
polarization of the transversal string vibration only. We also
assume that the propagation speed of longitudinal vibration is
much larger than that of transversal vibration so that the increase
in tension caused by prolongation is immediately spread over the
whole string. The tension along the string, Ft, can be expressed
as [5]
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where Fnom is the nominal tension of the string at rest, E is
Young’s modulus, S is the cross-sectional area of the string,
" nom is the nominal string length, and " dev is its deviation, i.e.,
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where y is the displacement of the string and x is the spatial
coordinate along the string (see, e.g., [5]).

The tension modulation is illustrated in Fig. 1 for two cases
where a string is ideally plucked in the middle (top) and at a
distance 0.19" nom from the termination (bottom). In this simula-
tion the string is assumed to have rigid end supports. The nomi-
nal string tension Fnom is depicted with a dashed line. The mono-
tonic decaying curve is the average tension that has been com-
puted with a running time average over each period of the ten-
sion curve. Note that in the upper figure the tension equals Fnom

once during each period whereas in the lower figure the tension
only approaches Fnom with time.

The tension modulation affects the transversal speed c as

c
F= t

ρ
(3)

where ρ is the linear mass density of the string. The fundamental
frequency of the tone is linearly related to the average wave
propagation speed. Since the average wave speed depends on the
average tension (examples shown in Fig. 1), the fundamental
frequency is expected to decay exponentially towards the nomi-
nal value. Note that it is impossible to directly observe the oscil-
lating tension in a tone recorded from a real string, rather, only
the decaying fundamental frequency may be perceived or
revealed through signal analysis.

The wave propagation speed of Eq. (3) can be rewritten as
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where the mass density ρ and the nominal wave speed cnom are
defined as follows:

( )ρ ρ= +nom dev" " "  and c Fnom nom nom= ρ

where ρnom is the nominal mass density when the string is at rest.
In addition to the decay of fundamental frequency, the nonlin-

ear vibration provides a mechanism for coupling of the vibration
modes assuming that at least one of the end supports is not com-
pletely rigid [5]. This allows generation of harmonics that are
initially missing due to initial conditions [5]. In practice, the
string terminations allow this kind of nonlinear mode coupling in
every musical instrument. In the case of the kantele, a traditional
Finnish plucked string instrument, the nonlinearity caused by a
yielding tuning peg has been analyzed and modeled by Karja-
lainen et al. [2] who used a memoryless nonlinear model.

2.2 Analysis of Recorded Guitar Tones
Figure 2 shows the fundamental-frequency trajectory of a tone
played with an electric guitar with steel strings. This curve was
produced using a pitch-synchronous short-time autocorrelation
analysis. The recorded signal was divided into analysis frames
that are four times longer than the nominal fundamental period.
The frames were windowed using a Hamming window of the
same length. The consecutive analysis frames overlap by 50%. A
high-resolution fundamental-frequency estimate of each frame
was computed by first searching for the maximum of the autocor-

relation function and by fine-tuning this initial estimate using
parabolic interpolation. Figure 2 exhibits a clear exponential
decay of the fundamental frequency. The decay within a time
interval of one second is approximately 1.5 Hz. This time series
may be used to obtain parameters for a discrete-time simulation
of the nonlinear string.

3. TENSION MODULATION MODELS
Our approach to discrete-time simulation of tension modulation
is to extend the bidirectional linear waveguide model [9], [3]
with a signal-dependent nonlinear TVFD structure discussed in
[11]. The two delay lines are implemented using two nonlinear
delay lines of Fig. 3. The function G maps the signal in the delay
line into a delay parameter d(n) where n is the discrete time
index. The delay parameter is used to control the FD filter. Each
delay line models the wave propagation delay τ/2 between the
two ends of the string, which is determined as

τ λ= c (5)

where λ is twice the distance between the ends of the string, and
c is the wave propagation speed as given by Eq. (3). The delay-
line length in sampling intervals is obtained as

L = fsτ (6)

The tension modulation can be readily formulated according
to the general framework of Fig. 3, since the tension variation is
a function of only the deviation of the string length. In the fol-
lowing, we first derive a dual-delay-line string model with ten-
sion modulation using the TVFD structure and then, with minor
compromises, simplify it into a computationally more efficient
single-delay-loop string model. We utilize the formulation of a
TVFD structure for uniformly distributed time-varying propaga-
tion velocity described in [11]. This is applicable to simulation of
tension modulation, since the propagation speed of transversal
vibrations is approximately uniform due to the high propagation
speed of longitudinal vibrations.

3.1 Dual-Delay-Line String Model
The deviation of the delay-line length in samples can be approxi-
mated from the digital waveguide model as follows (cf. Eq. 2)
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where s+(n,k) and s–(n,k) are the slope signals traveling in the
delay lines, Lnom is the nominal delay-line length, and n and k are
the discrete time and space indices, respectively. While this for-
mula could be readily implemented, it can still be simplified.
When we assume that [s+(n,k) + s–(n,k)]2 << 1, we may develop a
Taylor approximation of the square root function. When the sec-
ond and higher-order terms are excluded, this yields
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Figure 1. Tension variation of a simulated vibrating
string (solid line) for two different plucking points. The
tension of the string at rest, Fnom, is indicated with a
dashed line.
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Figure 2. Time history of the fundamental-frequency
estimate of an electric guitar tone.
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Figure 3. General nonlinear delay line where the delay-
line signal controls the delay parameter d(n) of a frac-
tional delay (FD) filter (adopted from [11]). Function G
computes d(n) based on the contents of the delay line.
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where we have multiplied both sides by 2 and the term Lnom is
canceled by the sum of the constant terms of the Taylor series.

Using Eqs. (5) and (6), we may write

L n f c n( ) ( )= sλ (9)

where c(n) can be extended according to Eq. (4), which we may
approximate by a Taylor series. Neglecting second and higher-
order terms and substituting into Eq. (9), we obtain
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where K = ES/Fnom and we have replaced the ratio " "dev /  with
Ldev(n) / L.

Looking at Eqs. (10) and (8), we now see that the string ten-
sion modulation can be simulated by controlling a fractional
delay filter with a power-like signal Ldev(n) which is a sum of the
pair-wise squared sums of the delay-line signals (see Eq. (8)).

The model structure illustrated in Figure 4 implements a ver-
sion of this algorithm where Ldev(n) is computed using a power-
estimation algorithm, and we have dropped the second-order
term in Eq. (10) and aggregated all the terms multiplying Ldev(n).
In addition, we have inserted a one-pole filter that approximates
temporal integration. It implements memory that is required
when the distributed time-varying resampling is lumped into a
single point at the end of the delay line (see [11], Section 3.2 for
details). The transfer function of the one-pole filter is
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where coefficient ap controlling the bandwidth of integration is
chosen to be –1 < ap < 0 and gain factor gp that controls the
depth of tension modulation must be nonnegative. When gp = 0,
the traditional linear digital waveguide models is obtained. When
gp > 0, the nonlinear effect increases with the power of the delay-
line signal. Note that I(z) also includes the minus sign so that
when its input signal is a power-like, non-negative sequence, the
output signal will be non-positive. As the output signal controls
the length of the delay line, the delay is inversely proportional to
the input signal of I(z). Filters Rb(z) and Rf(z) in Figure 4
approximate the reflections from the terminations of the string.
Note that a division by 2 is included in Figure 4 since the length

variation is realized with two FD filters—one for each delay line.
In this application, a TVFD element is conveniently approxi-

mated using Lagrange interpolation [4], which is often used in
digital waveguide models due to its easy coefficient update,
bounded magnitude response that does not risk the stability of
the feedback loop, and a transient-free behavior in time-varying
cases. The Farrow structure can be used to implement a Lagrange
interpolation so that its transfer function is directly controlled by
a single parameter d(n) [10], [11].

Above we have assumed that the nominal length of the string,
Lnom, is an integral number. In general, the nominal length may
be a non-integral multiple of the sampling interval. In such a
case, the fractional part of the nominal delay-line length can be
realized by using the same FD filter that is used for simulating
tension modulation.

3.2 Single-Delay-Loop String Model
The structure developed above uses two delay lines (see Fig. 4).
It would be desirable to use a single-delay-loop model instead
due to computational savings. For a discussion on reasons for
this, see, e.g., [3]. Here we derive an approximation of the above
model that behaves similarly but is computationally cheaper.

First we may move one of the reflection filters over to the
other side of the delay lines (to the left in Fig. 4) and consolidate
it with the other reflection filter. This changes the contents of the
delay lines little, since the magnitude of the reflection filters is
very close to unity. The phase inversion that occurs with the
reflection filter can be accounted for in the initial slope of the
string by inverting one half of it. The two FD filters may also be
combined into a single TVFD unit. This FD element is most
conveniently placed at the end of the delay lines which may then
be combined into a single delay line whose length will be equal
to the total length of the two delay lines in the original model.
The resulting single-delay-loop string model is presented in Fig.
5. Loop filter Hl(z) now represents the composite lowpass filter-
ing effect of Rb(z) and Rf(z).

The power estimation in Fig. 5 consists of summing the first
sample of the delay line with last one, the second sample with the
second last one, and so on, squaring all these sums and summing
up all terms. The power estimation is the most time-consuming
operation in the model. A simple way to reduce the computa-
tional burden of the squared sum is to approximate the instanta-
neous power as a sparse squared sum, where every Mth sample
pair is included but the rest of the pairs are excluded. The sparse
squared sum must be scaled by M so that the magnitude of the
instantaneous power is retained.

4. SYNTHESIS EXAMPLES
Examples of synthetic tones produced with the single-delay-loop
model of Fig. 5 are presented in this section. In the examples,
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Figure 4. Dual-delay-line string synthesis model with
tension modulation implemented with signal-dependent
fractional delay elements.
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Figure 5. Single-delay-loop string synthesis model
incorporating tension modulation.



Lnom = 90 samples. The input signal of the model is the initial
slope curve that causes a maximum displacement of 1 unit sam-
ple. The plucking point is Lnom/3, and thus every third harmonic
component is missing in tones synthesized with the linear model.
Both the linear and the nonlinear cases are examined. A second-
order Lagrange interpolator is used as a TVFD filter.

Figure 6 shows the envelopes of three lowest harmonics of the
synthetic tones as a function of time. In the linear case (gp = 0),
the third harmonic is very weak (not visible in the top part of Fig.
6), as expected. In the case of the nonlinear model (Fig. 6, middle
part) with gp = 10.0, the third harmonic starts at a small level but
soon its level begins to raise and finally it decays like the other
harmonics. A synthetic tone produced with a sparse squared sum
with M = 6 has been analyzed on bottom in Fig. 6. The harmonic
envelopes have not changed much with respect to the middle part
of Fig. 6 while the summing points have been reduced by 80%
from 45 to 8. This illustrates that the pruning of operations in
power estimation does not necessarily deteriorate the output sig-
nal. Figure 7 presents the fundamental-frequency estimate of the
two synthetic tones. Comparison against Fig. 2 suggests that the
pitch variation is properly reproduced in both cases.

Synthetic string tones produced with the nonlinear model are
perceived as less static than those generated with a linear model.
When compared with original guitar tones, they sound more
realistic. Examples of recorded and synthetic tones are available
at http://www.acoustics.hut.fi/~ttolonen/sounddemos/tmstr/.

5. SUMMARY
This paper considered sound synthesis of plucked-string tones
when the vibrating string behaves in a nonlinear fashion. The
nonlinearity was assumed to be caused by tension modulation
due to the non-negligible displacement of the string. This non-
linearity influences the frequencies and amplitudes of partials in

tones produced by steel strings. A physics-based sound synthesis
algorithm that is based around a digital waveguide model was
derived which produces similar effects that are found in record-
ings of plucked-string tones. A computationally efficient simpli-
fied algorithm was also devised. Analysis of synthetic tones pro-
duced by the model revealed that the expected phenomena, that
is, the nonlinear generation of missing harmonics and variation in
the fundamental frequency, are reproduced.
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Figure 6. Envelopes of the first (dash-dot line), second
(dashed line), and third (solid line) harmonic of synthetic
tones generated by the linear (top), nonlinear single-
delay-loop (middle) with gp = 10.0, and the nonlinear
single-delay-loop string algorithm with sparse power
estimation (M = 6) and gp = 10.0 (bottom).
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Figure 7. Fundamental frequency of the synthetic tone
using standard (solid) and sparse squared sum (dashed).


