
WAVELET BASED ESTIMATOR FOR THE SELF-SIMILARITY PARAMETER OF
�-STABLE PROCESSES

Patrice ABRY1, Lieve DELBEKE2 and Patrick FLANDRIN1

(1) - CNRS URA 1325 - ENS Lyon - 46, all´ee d’Italie 69 364 LYON Cedex 07 - France

tel: (+33) 4 72 72 84 93 - Fax: (+33) 4 72 72 80 80

pabry,flandrin@physique.ens-lyon.fr - http://www.physique.ens-lyon.fr/ts

(2) KU Leuven, Department of Mathematics, Celestijnenlaan 200 B,3001 Heverlee, Belgium

tel: (+32) 16 32 70 49 - Fax: (+32) 16 32 79 89 -Lieve.Delbeke@wis.kuleuven.ac.be

ABSTRACT
We, here, study self-similar processes with possibly infinite second-
order statistics and long-range dependence. To do so, we detail
the statistical properties of the wavelet coefficients of�-stable self
similar processes, used as a paradigm for those situations. We,
then, propose a wavelet-based estimator for the self-similarity pa-
rameter and analyse its statistical performance both theoretically
and numerically. We show that it is unbiased, that its variance de-
creases as the inverse of the length of the data and that it can be
easily implemented.

1. MOTIVATION

Evidencing self-similarity and estimating the corresponding pa-
rameters in experimental data is a major, yet difficult, issue. Self-
similarity indeed implies non stationarity [14] and can, quite often,
be related to long-range statistical dependences (LRD), which re-
sult in severe complications when data analysis and parameter es-
timation tasks are undertaken [3]. Fractional Brownian motion of
indexH is as example of such a self similar process which exhibits
long-range statistical dependence wheneverd = H � 1=2 > 0.
For the analysis of such kind of processes, whose second order
statistics are finite, the wavelet transform already proved to be a
relevant tool [10, 15, 1, 2]. We are here interested in the study of
self similar processes with infinite second order statistics (ISOS)
which may also exhibit long-range dependences. For those sit-
uations,�-stable processes can be regarded as a paradigm. The
linear fractional stable motion (LFSM) model indeed provides us
with a broad class of�-stable self similar processes with stationary
increments and possibly long-range dependence [14] .

The aim of this work is therefore to propose a generalization
of previous wavelet-based estimators of the self-similarity param-
eter [1, 10], dedicated to processes that may present both type of
complications (LRD and ISOS) and show theoretically and numer-
ically that it exhibits excellent statistical properties (unbiasedness
and1=n variance decrease).

2. SYMMETRIC �-STABLE SELF SIMILAR PROCESSES

Self similar process. A processx is said to be self-similar with
self similarity parameterH, and denotedH-ss, if and only if:

(x(t1); : : : x(tn))
d
= c�H (x(ct1); : : : x(ctn)) ;8n; 8c > 0;

where
d
=means equality in law. Though self-similarity implies non

stationarity [14], there is an interesting subclass ofH-ss processes,
whose increments are stationary. A processx is said to possess
stationary incrementsyh if the finite-dimensional distributions of
yh(t) = x(t+h)�x(t)do not depend ont. A self-similar process
with stationary increments is denoted byH-sssi.

Symmetric�-stable process. Letx(t) be a symmetric�-stable
(S�S) process defined using the integral representation [14, 6]:

x(t) =

Z
f(t; u)M(du) ;

whereM(du) is an S�S measure andf(t; u) an integration kernel
that controls the time dependence of the statistical properties ofx.
Two examples of particular interest here are given in [14].

� Whenf(t;u) = 1 for 0 < u � t andf(t;u) = 0 else-
where,x reduces to the so-called L´evy process. It has sta-
tionary and independent increments and is a self similar
process with self-similarity parameterH = 1=�.

� A simple version of the LFSM is obtained through

f(t;u) = (t� u)d+ � (�u)d+;

where(u)+ = u if u � 0 and0 elsewhere and the frac-
tional parameterd satisfy�1 < d < 1=2 [14]. It basically
amounts to fractionally integrating a stationary sequence of
i.i.d. �-stable variables. Note thatd = 0 requires a specific
definition not developed here [14]. The LFSM is self simi-
lar withH = d+1=� and has stationary increments, whose
statistical dependence is controlled byd. Long-range de-
pendence occurs ford > 0, i.e.,H > 1=� [14]. It can more
precisely be shown [14] that ifx is LFSM, the codifference
of its incrementsyh slowly decreases as a power-law of the
lag� :

Codyh(t)yh(t+ �) � j� j(��1)H ; j� j ! +1;

for all the pairs(�;H) considered here. For further tech-
nical details and definition of the codifference, see [14].
We simply here recall that it plays for�-stable process the
role of the covariance for processes with finite second order
statistics.



3. WAVELET COEFFICIENTS OF �-STABLE
SYMMETRIC SELF SIMILAR PROCESSES

Wavelet transform. Let dx(j; k) be the coefficients of the dis-
crete wavelet transform (DWT) defined asdx(j;k) = hx; j;ki.
The analysing functions j;k(t) = 2�j=2 0(2

�jt�k) are dilated
and translated templates of the mother wavelet 0(t) [5]. We will
not go further into the introduction of the DWT and of the under-
lying multiresolution analysis, however, we insist here on the two
following items that play a key role in the analysis below:

� I1: The analysis basis is designed using the dilation opera-
tor,  j;0(t) =  0(t=2j)=2j=2, and therefore is, by nature,
self-similar.

� I2: The mother-wavelet is characterized by its numberN
of vanishing moments:Z

tk 0(t)dt � 0; k = 0; : : : ;N � 1: (1)

By definition of the wavelet transform,N � 1 [5].

Moreover, most of the results stated below hold for both the con-
tinuous (CWT) and discrete wavelet transform, however for the
estimation purposes developped here the computation of a CWT
as compared to a DWT proves useless [8]. We therefore hereafter
restrict to the DWT which can be easily implemented using a fast
pyramidal filter-bank based algorithm [5].

H-ss process. Let x beH�ss process, its wavelet coefficients
reproduce the self-similarity through [6, 7, 13]:

P0: (dx(j; 0); dx(j; 1); : : : ; dx(j;Nj � 1))
d
= (2)

2j(H+ 1

2
)(dx(0; 0); dx(0; 1); : : : ; dx(0;Nj � 1)):

which indicates self-similarity with parameterH+1=2, the+1=2
term being simply due to the chosen normalization of the wavelet.
This is a direct consequence ofI1.

Process with stationary increments. Let x be a process with
stationary increments, which is not necessarystationary. Its wavelet
coefficients satisfy:
P1: fdx(j; 1); : : : dx(j;k)g form, at each octavej, stationary
sequences.

This is a consequence ofI2 [10, 15, 11, 4].

S�S processes with stationary increments. Let x be a S�S
process, with stationary increments, then the sequences of wavelet
coefficients satisfy [7, 6, 13]:
P2: fdx(j; 1); : : : dx(j;k)g form, at each octavej, identically
distributed S�S processes.

LFSM. Let x be a LFSM. For each octavej, the statistical
dependence structure of the wavelet coefficients can be analyzed
through their codifferences. It has been shown [6, 9] that, when
j2jk � 2j

0

k0j ! +1,

P3: jCoddx(j; k)dx(j
0; k0)j � Cj2jk� 2j

0

k0j�(�=2)(N�H) :
(3)

This results from bothI1 andI2 and shows that the range of
dependence of any two wavelet coefficients can be significantly
shortened by increasing the number of vanishing moments of the
mother wavelets. More specifically the long range dependence
structure that can be introduced in the LFSM if choosing a frac-
tional integration of parameterd > 0 can be significantly short-
ened by increasingN . This effect receives more attention in the
following section.

4. ESTIMATION OF THE SELF-SIMILARITY
PARAMETER

After proposing an intuitive understanding of the wavelet based
estimator forĤ, we give its definition and derive its statistical per-
formance both from theoretical and numerical arguments.

Data generation and numerical simulations. Using the algo-
rithm described in [14], page 371, we synthetizedL = 60 real-
izations of LFSMs (withn = 8192 samples each),� andH are
chosen such thatx is LRD: � = 1:5;H = 0:85. The wavelet
transforms are performed using Daubechies wavelets (because of
compact support and easy control ofN , but not because of or-
thonormality - note that the theoretical results proven here do not
depend on mother wavelet except on its number of vanishing mo-
mentsN . More details can be found in [8]). The covariance func-
tions shown in Fig. 1 result from an average of theL covariance
estimates obtained using a standard biased covariance estimator.
Independently on each realization, an estimationĤl of H is per-
formed. Mean�Ĥ and variance�2

Ĥ
for Ĥ are computed using the

standard sample estimators. Bias and variances are represented
in Fig. 2 and compared to the theoretical values. Confidence in-
tervals (cf. Fig. 2 (a)) for the mean are given using a Gaussian
approximation forĤ (see below).

Principle of the estimation. Let x be aH-sssi S�S process,
from P0, we obtain:

IE log2 jdx(j; k)j = j(H + 1=2) + IE log2 jdx(0; k)j; (4)

which allows to estimateH by measuring the slope in a linear fit
in the IElog2 jdx(j; k)j versusj plot. The difficulty lies in the fact
that IElog2 jdx(j; k)j needs to be estimated. Using the stationary
propertyP1, one can perform an average along the time indexk,
at each octavej:

Yj = 1=nj

njX
k=1

log2 jdx(j; k)j;

wherenj is the number of wavelet coefficients at scalej. Obvi-
ously, one has:

IEYj = j(H + 1=2) + 1=nj
Pnj

k=1
IE log2 jdx(0; k)j

= j(H + 1=2) + IE log2 jdx(0; 0)j:
(5)

Moreover, fromP2, we have thatlog2 jdx(j; k)j has finite
second-order statistics [6, 12]. In the specific case wherex is a
LFSM, the covariance function oflog2 jdx(j;k)j behaves as the
codifference ofdx(j;k), i.e., whenjk � k0j ! +1,

jCov log2 jdx(j;k)j; log2 jdx(j; k
0)jj � Cjk � k0j�(�=4)(N�H) :

(6)
This result, that comes fromP3, was recently proven in [6, 9]

and is a crucial point. It is known indeed [3] that the performance
of the sample mean estimator are poor if LRD exists among data;
for instance its variance decreases much slower than the usual1=n
behaviour. Eq. (6) shows that LRD, that can be introduced in the
LFSM by choosingd > 0, can be significantly reduced among the
log2 jdx(j; k)j by increasing the number of vanishing momentsN
and turned to short range dependencies; allowing, for instance,
an efficient use of the sample mean estimator. Note, however,
that, for a givenH, this decorrelation effect requires largerN ’s



for smaller�’s: basically,N has to behave as1=�. This theo-
retical result is here further illustrated using the numerical sim-
ulations described above. Fig. 1 compares the covariance func-
tions of log jyj (wherey(t) = x(t+ 1) � x(t) andx is LFSM),
and offlog jdx(j; k)j; k 2 ZZg obtained using Daubechies1 and
Daubechies3 wavelets. Fig. 1 clearly shows that covariance func-
tions behave as power-laws of the lag for large lags and that their
rates of decrease significantly increase whenN is increased, in
agreement with (6). It therefore confirms that an increase ofN
insures a better decorrelation among thelog2 jdx(j; k)j.

An exact decorrelation hypothesis,HYP1, among thelog jdx(j; k)j
can be used to derive closed-form relations for the variance ofYj
[6]:

VarYj = Var
�
1=nj

P
k
log2 jdx(0; k)j

�
= Var (log2 jdx(0; 0)j) =nj
= (log2(e))

2�2(1 + 2=�2)=(12nj)
(7)

Both stationarity (P1) and short range dependence (P3) indi-
cate that measuring the slope in aYj versusj plot will provide us
with a relevant estimate ofH. This can be made more precise.

Definition of Ĥ. Let Ĥ denote the estimate ofH obtained as
the slope of a linear fit in aYj versusj plot:

Ĥ =
X
j

wjYj � 1=2;

where,
P

j
is to be understood as

Pj2
j1

if the linear fit is performed
on the range of scalesj1 � j � j2, and the weigthswj satisfyP

j
jwj = 1 and

P
j
wj = 0. They follow the general form

wj = 1=aj(S0j�S1)=(S0S2�S
2
1) whereSm =

Pj2
j=j1

a�1j jm

(m = 0; 1; 2) and theaj are arbitrary numbers.

Bias ofĤ. Using Eq. (5) above, one obtains:

IEĤ =
P

j
wjIEYj � 1=2

=
X
j

jwj

| {z }
=1

(H + 1=2) +
X
j

wj

| {z }
=0

IE log2 jdx(0; 0)j � 1=2

= H;

which shows that the estimate is strictly unbiased even for finite
length duration of analyzed data. Note that this result is valid re-
gardless of the value of� (0 < � � 2). Fig. 2 (a) consists of
the bias ofĤ, with 95% confidence intervals, as a function ofn.
It shows that the estimator is unbiased even for small length of
analysed process. Let us insist again on the fact that this directly
results from the wavelet basis being built from a dilation operator
(I1).

Variance ofĤ. From inequality (6), it can be shown, taking into
account the residual correlations between wavelet coefficients, that
[6, 9]:

Var Ĥ � Cn�1=(1+1=(�(N�H))) : (8)

Assuming exact decorrelation (HYP1) among thelog2 jdx(j; k)j,
one also has decorrelation between theYj , and one obtains:

Var Ĥ '
P

j
w2
jVarYj

' (log2(e))
2�2(1 + 2=�2)(

P
j
w2
j=nj)=12:

(9)

These results require the following comments.

1. For a given�, the variance is minimum when
P

j
w2
j=nj

is minimum, which can be obtained usingaj = VarYj �
n�1j . Such a choice has always been made here.

2. VarĤ all the less depend onH asN is increased. Under
HYP1, it does not depend onH.

3. Neglecting border effects,nj basically behaves asnj =
n2�j . Therefore,

P
j
w2
j=nj reduces to(

P
j
w2
j2

j)=n

which shows that, underHYP1, the variance of the esti-
mate exhibits the standard1=n decrease. The prefactorP

j
w2
j=nj is actually also depending onn through the

number of available scales, but this dependence is weak.
Such a1=n decrease of the variance is obtained regardless
of the possibly LRD nature of the process, which is not a
trivial result, see e.g., [3]. A careful examination of the
upper bound (8) however shows that the decrease of VarĤ
depends both onH and� and that an increase ofN reduces
this dependence not only with respect toH, but also with
respect to�.

4. UnderHYP1, the variance ofH explicitly depend, through
the prefactor, on� which can be an unknown parameter.
It could however be estimated using Eq. (7) above. The
performances of such a joint(�;H) estimator are under
current analysis.

Fig. 2 (b) compares the theoretical (Eq. (9)) and numerically ob-
tained variances of̂H as functions ofn. It shows thatHYP1 used
in the analytical derivation of Var̂H is relevant.

Confidence intervals forĤ. Fig. 2 (c), obtained from numer-
ical simulations as described above, shows that the random vari-
ableĤ exhibits a probability density function that is very close to
that of a Gaussian. In [6], theoretical arguments allow us to be-
lieve, that under mild conditions on the mother wavelet,̂H should
asymptotically follow a Gaussian law, but no proof is available
yet. From this assumed asymptotic Gaussianity, confidence inter-

vals forĤ can be derived using Eq. (9):̂H � z�;2
p

Var Ĥ. This
is another interesting feature of our estimator because it allows to
qualify the credit that can be given to the estimated value. Again,
deriving these confidence intervals requires the knowledge of�,
indicating that achieving a joint(�;H) estimate is crucial.

5. CONCLUSION

We proposed here a wavelet based estimator for the self similar
parameter of S�S self-similar processes and we showed (theoret-
ically and numerically) that it exhibits excellent statistical perfor-
mances (unbiasedness,1=n variance decrease, asymptotic Gaus-
sianity). We explained how this directly results from an intimate
adequacy between self-similarity and the wavelet transform.

This estimator applies in fact, without modification, to any
other�-stable self similar processes(not necessarily S�S or LFSM)
as well as to other possibly non-Gaussian self-similar processes
with finite second-order statistics: it will remain unbiased since, as
shown, unbiasedness only depend on self similarity and asymptot-
ically Gaussian and efficient (the value of the variance and there-
fore of the confidence intervals will change with probability den-
sity functions of the analyzed processes) [8].
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Figure 1:Covariances of thelog of the increments of a LFSM
and of the log of its wavelet coefficients.Autocovariance func-
tions of log jyj wherey is the increment process (LFSN) of the
LFSMx, of log jdx(j; k)j at fixed octavej using Daubechies1 and
a Daubechies3 wavelets. Top, lin-lin plot; bottom, log-log plot of
the absolute value of the covariance. It shows that the range of
correlation is significantly decreased when the numberN of van-
ishing moments of the mother wavelet is increased.
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