A NEW UNITARY ESPRIT-BASED TECHNIQUE FOR DIRECTION FINDING

Martin Haardt Alex B. Gershman
Siemens AG, OEN MN P 36 Signal Theory Group, Ruhr University
Hofmannstr. 51, D-81359 Munich, Germany D-44780 Bochum, Germany
martin.haardt@oen.siemens.de gsh@sth.ruhr-uni-bochum.de
ABSTRACT 2. SIGNAL MODEL

A new pseudo-noise resampling technique is proposedttgate Let a U_niform_ Linear Array (ULA) be composeql ‘M Sensors
he2nd let it receivey (g < M) narrowband sources impinging from

the effect of outliers in Unitary ESPRIT. This scheme improves the?d '€t 1t |
performance of Unitary ESPRIT in unreliable situations, where thé€ directionds, . .., 8,. Assume that there are only snapshots
so-called reliability test has a failure. For this purpose, we exploi(1): (2), - -, ®(N) available. The observation vectors can be
a pseudo-noise resampling of a failed Unitary ESPRIT estimatofnodeled as
with a censored selection of “successful” resamplings recovering 2(t) = As(t) +n(t), t=1,2,...,N )
the non-failed outputs of the reliability test.
where
A =[a(61),...,a(0,)] 2
1. INTRODUCTION is theM x g matrix of signal wavefrontsy(8) is theM x 1 steering
vector, s(t) is theg x 1 vector of source waveforms, ame(t) is
Unitary ESPRIT is a low-complexity modification of conventional the M x 1 vector of sensor noise. Hence, the measured array data
ESPRIT formulated in terms of real-valued computations [1], [2].matrix

The final step of Unitary ESPRIT involves a special test [1] show- X = [=(1),2(2),...,2(N)] 3)
ing whether the obtained Direction Of Arrival (DOA) estimate is can be modeled as
reliable. In case this test (in what follows referred to as ridre X=AS+ N 4)

liability test) has a failure, the final step of the algorithm yields a, here
complex conjugate pair of eigenvalues instead of a real one as in the S = [s(1), s(2) s(N)] ©)
non-failed case. The failed situation can be interpreted asugn ! e
lier corresponding to unresolved signal arrivals [1]. In the case of S theg x N matrix of source waveforms, and
geluleq rellabl_llty test, itis recommended in [1] and [2] to restart the ] N = [n(1),n(2),...,n(N)] ©)

gorithm with more reliable measurements or to use more snap
shots when estimating the covariance matrix. However, in manys the M x N matrix of sensor noise.
practical situations, neither more reliable measurements nor addi-
tional data snapshots are available.

In this paper, we propose another approach ttigate such

type of outliers. Our approach does not require any additional datanccording to [1], introduce the real-valued data matrix
i.e., it exploits exactly the same data snapshots as the failured es-
timate itself. Instead of unavailable additional data, it utilizes syn- T(X)=Q5[X HuX'IN]Q,y (7
thetically generated data as in the bootstrap technique. The ke . o . .
idea of our approach is to use a pseudo-noise resampling for eli vherell s is the M > M matrix with ones on its antidiagonal and
inating the failure and for recovering the outlier-free performance.zeros elsewhere,

3. UNITARY ESPRIT

For this purpose, we exploit a censored selection of “successful” re- 1 I, I,

samplings for which the reliability test has been passed in the sense Q= 7 [ o, —jIL ] (8)
that the final step of Unitary ESPRIT yields a real eigenvalue pair.

Our technique uses the main idea of the estimator bank approach I, o I,

[3], though we develop and apply another, more general type of Q _ 1 o7 2 oT )
resampling [4]. Another important difference is that the standard LT o, o0 —jIL

estimator bank approach [3] requir@griori knowledge of source

localization sectors, whereas the reported technique is free of su@e, for example, theIs{parse u*nitary matrices defined id [13, the
a limitation. Ixlidentity matrix,(-)™ and(-)* stand for Hermitian transpose and

complex conjugate, respectively. TR x M sample covariance
of the real-valued data matrix (7) is given by
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Write the eigendecomposition dt. as 4. PSEUDO-NOISE RESAMPLING

R. = EsAsE' + ExAxEy (1) pseudo-noise-based techniques are known in a variety of applica-
whereg x g and(M — q) x (M — q) diagonal matriced\s and tic_ms (e.g., see [5] an_d [6]). In case ofa f_ailed_ reliability test, the
Ax contain theg and M — g sample signal and noise subspace@m of our pseudo-noise resampling technique is to remove the out-
eigenvalues, respectively, whereas the columns ofithe g and  lier and to recover the Unitary ESPRIT performance usirgctly
M x (M — g) matricesEs andEx contain the sample signal and the same data snapshdtsat have been used in Unitary ESPRIT.

noise subspace eigenvectors, respectively. The central idea is to resample the data matrix several times using
The Unitary ESPRIT algorithm is based on the solution of theSynthetically generated pseudo-noise [4], to run Unitary ESPRIT
real-valued invariance equation [1] “in parallel” for each such resampling, and then to select only the

“successful” runs for which the reliability test is satisfied and the

KiEsY =~ K»Es (12)  outlier is removed. Thaf x N resampled data matrix is given by
IRm)(q IRqu
Y=X+2Z (19)
by means of Least Squares (LS), Total LS (TLS), or Structured LS
(SLS) [2]. Here, then x M matricesK; andK, are given by whereZ is the M x N matrix of independent zero-mean circular
seudo-noise drawn from a random generator:
Ky = QE(J1 +J2)Qy = 2Re{Q21:Q,}  (13) P g
Hy _ 2 Ty _
K> = QU(J, — 12)Q,, = 2Im{QE1Q,,}  (14) E{Z}=0, E{ZZ"}=0%NI, E{ZZ"}=0 (20)

where then x M matricesZ; andJ, selectthe first and the last Repeating the resampling runs (19), we can obtain more and more
(m < M) rows of an arbitrary matrix with the vertical dimension “synthetically” generated data matrices.

M [1], respectively. Write the eigendecomposition of the obtained  |n order to maintain an acceptable Signalto Noise Ratio (SNR)

real-valuedy x g matrix T as in the synthetic (resampled) data, the variance of the pseudo-noise
_ -1 0% should have approximately the same order as the variahce
Y =TQT (15) o tPProXIim: ; g

) ) ] ) of the original noise (i.egz should not be too high). A similar

wheref2 is theq x ¢ diagonal matrix of eigenvalues constraint is exploited in [6]. The consistent estimatedfs given
Q = diag{wi,w2,...,wq} (16) by [7]
andT is theg x g matrix of eigenvectors. Sinc¥ is a real-valued 1 1 M
. . . . . A2

matrix, it can happen that either all eigenvalues in (16) are real or 6" = 3 trace{Ax} = [T Z Ai (21)
some of them appear as complex conjugate pairs. The latter case 4 4 i=g+1

corresponds to the unreliable DOA estimate when the associated .

signal sources are not resolved (i.e., they merge and therefore restff€reds > As > --- > Axr are the ordered eigenvalues of the
into a complex conjugate eigenvalue pair). In [1], it is proposed tosample covariance matrik.. In practice, it is meaningful to de-
exploit these eigenvalue properties in a reliability test: termine the variance of the pseudo-noise as

Check whether all eigenvalues, i = 1,2,...,q of ¥ in (15) oy =p-6° (22)
are real-valued.

. o ) - wherep ~ 1 is a constant chosen by the user.
If this test fails, it is recommendedin [1] and [2] to start Unitary ES- Motivated by the success of modern resampling schemes (e.g.,

PRIT again with more reliable measurements, or to use more ShaBuotstrap and jackknife), it is our goal that the pseudo-nBisell
shots. However, in many practical situations neither more reliablegjistripute the original nois® between array sensors in a favor-
measurements nor additional data snapshots are available. The idgga way. Thereby, an improved estimation performance can be
of our approach presented below is to exploit synthetically gener;chieved in the successful resampling runs (i.e., where the reliabil-
ated (resampled) data instead of unavailable additional measurqg test is passed). In this approach, the reliability test can be inter-

data. o . o . preted as a censored selector of the results of the pseudo-random
If the reliability test is satisfied in Unitary ESPRIT, the result- resampling.

ing signal DOA's can be estimated in a straightforward manner. FOr  \ne stress that the synthetically generated ndsalways de-
example, for a ULA with maximum overlap [1], the estimates of the creases the SNR, and therefdhe resampling itself cannot bring
signal DOA's are obtained as any performance improvemerdoweverit is no longer trueif we

use the reliability test (censoring) to select only outlier-free estima-
tors from the whole number of resampled estimators.

#; = arcsin (% arctan(wi)) , 1=1,2,...,q a7)
T

whered is the interelement spacing, aAds the wavelength. If the

reliability test fails, it is meaningful to omit the complex parts of 5. THE PROPOSED TECHNIQUE
the complex conjugate eigenvalugs Therefore, the estimates of ) )
the signal DOA's are then given by Let us now formulate the new algorithm which employs the syn-

thetic (resampled) data (19) every time the reliability test has failed
f; = arcsin (i arctan(Re{wi})) , i=1,2,...,q (18) for the measured data (3). Assume that aReresampling runs
wd we obtainK “parallel” Unitary ESPRIT estimators, where each of
Note that in this situation the outlier occurgdause each pair of them is applied to a different resampled data matrix (19). Let the
unresolved signals is attributed to a single real part of a compleith estimator be ) »
conjugate eigenvalue pair. 0\ = (61 (23)



Whereégi) < ég’) < e < é‘(;) is the ordered set of Unitary  DOA ESTIMATION RMSE (FOR OUTLYING RUNS ONLY) _

ESPRIT DOA estimates corresponding to e resampling run. 2sf © X X STANDARD UNITARY ESPRIT ) ]
Then, provided that the data matX is fixed, these estimators are o o Eﬂlm ESESE W: Eéiﬁmtmé Eﬁ;ﬂ»
said to form thestimator bank3] My |99 Wmmemmmwminesi i 1]
F=4{69, i=1,2,...,K} (24) 2 :
@ + x x M x x
of dimensionk'. bl a i
Divide (24) in two disjoint subsets g
w (=]
o (i 218 1
F={Y, i=1,2,...,0} (25) e L .
Fo={0,i=1,2,...,K — J} (26) o s . ]
where the first subsef; containsJ estimators that pass the reli- ° ° o o
ability test, whereas the second subBgtcontains the remaining ¥ o N °
K — J estimators for which this test fails. N T S Sy S A
3 4 5 6 7 8 9 10 11 12 13
SNR (DB)
Table 1: Summary of the proposed algorithm Figure 1: RMSE's vs. the SNR in the first example.
1. Compute the standard Unitary ESPRIT DOA estima- [~ s e
tor using the measured data matrix (3) 18} :
2. Apply the reliability test to this estimator. Ler A s 2
14f o A 2 B A
o If the reliability test has no failure then estimate N . 8 ° ¥ ’
the signal DOA's using (17) and go to step 4. L2r 5 Q " )
¢ If the reliability test fails then form the estima- E i a o A
tor bank (24) using multiple ps€lo-noise resamt g . . ¢
plings (19) of the measured data matrix (3). gosr ]
?
3. Apply the reliability test to each resampled estimator
from the estimator bank (24). o6f ]
o x x  STANDARD UNITARY ESPRIT
. A A =
e IfanyJ (J > 0) estimators from (24) pass the re- . 5 5 UNITARY ESPRIT WITH RESAMPLING Eiﬂ))
|(I<2’:lg)l|lty test then estimate the signal DOA's using n ° L ONITARY CSPRIT WITH RESAMPLING ooty
' 2 s 4 5 & 7 8 9 1 11 12 1
¢ If the reliability test fails for all estimators fron SNR (08)
(24) (i.e.,J = 0) then use standard Unitary E$- ) ] ) ]
PRIT and estimate the signal DOA's using (18). Figure 2: Biases vs. the SNR in the first example.
4. Stop the algorithm
{c1,...,c5} = sort {b1,...,bs} (30)

andsort {-} stands for the operator of sorting in ascending (de-
scending) order. The proposed algorithm is based on equations
raJeJ), (18), (28) and is summarized in Table 1.
It should be noted that our algorithm requires more computa-
tions than Unitary ESPRIT by a facto# K reu: Whered < rout <
é(i) A va . 1is the reliability test failure rate for Unitary ESPRIT. Note that ac-
={6Ne |, i=1,2,...,J (27) ; 4 . )
cording to our simulations, typical values of the parameigy are
Apparently, an appropriate combination of the results of these “succoncentrated approximately betweand0.15. Taking into ac-
cessfully” resampled estimators is necessary to obtain a final esffount the low computational complexity of Unitary ESPRIT, it can
mate. Assuming that the DOA's in (27) are sorted?ﬁ% < ég’) < be concludedthat for a moderaiethe proposed algorithm enables
~(3) . . . an efficient implementation, which can be parallelized easily. Ap-
- <6y foralli=1,2,...,J, exploit the robust median aver- parently, this additional increase of the computational burden rel-
ager to obtain the final DOA estimates [3] ative to the Unitary ESPRIT algorithm can be viewed as a natural
payment for the improved (outlier-free) performance.

Consider the case when the first subset contains at least o
estimator, i.e., led < J < K. Let the estimators in the first subset
be given by

61 = med {61,6P,...,6Y, 1=1,2,...,4 (28

where for arbitrary red; , b2 ..., b 6. SIMULATION RESULTS
med {b by} = (cz +e1,,)/2, if J iseven g) Inall simulations to follow, we assume a ULA dif = 6 om-
Lreee B o, if J is odd nidirectional sensors with a half-wavelength spaciig,= 100
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Figure 3: RMSE’s vs. the SNR in the first example.
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Figure 4: RMSE’s vs. the SNR in the second example.

. . 2
snapshots, uncorrelated equipower sources with zero-mean GaLEs]-
sian waveforms, and zero-mean white Gaussian noise. The pseudo-

noise parametegr = 0.2 was taken in (22) and all results were av-

significantly lower after the resampling than that in outlying Uni-
tary ESPRIT estimates, and this proves the positive effect of resam-
pling. From Figs. 1 and 2 one can conclude that the v&lue 30

is sufficient to obtain a satisfactory performance.

As the outlier rate may change with SNR, it is interesting to
study how the statistical performance is improved when the aver-
aging is done over all simulation runs, irrespective of the Unitary
ESPRIT performance in each run. Fig. 3 shows the RMSE'’s of
Unitary ESPRIT and the proposed algorithm (wKh= 30) versus
the SNR for the first example. In contrast to Fig. 1, the results in
this figure are averaged ovell simulation runsas well as over the
first two sources.

In the second example, we assumed two sourcesfuith 0°
andf; = 0.5°. The estimation RMSE's of Unitary ESPRIT and
the proposed algorithm (witk® = 30) versus the SNR are plotted
for this example in Fig. 4. Again, the results were averaged over all
simulation runs and both sources.

From Figs. 3 and 4 we can observe noticeable statistical perfor-
mance improvements achieved via the proposed algorithm relative
to standard Unitary ESPRIT. These improvements are more pro-
nounced in the specific “trait®n” region between the so-called
threshold and asymptotic domains, where outliers affect the statis-
tical performance of Unitary ESPRIT significantly.

7. CONCLUSIONS

The proposed resampling approach has been shown to enable the
mitigation of outliers in Unitary ESPRIT. Our technique results

in an improved statistical performance in the “transition” region,
where the outliers have a strong contribution to the statistical per-
formance of Unitary ESPRIT. The proposed algorithm is free of
typical limitations of other known resampling (estimator bank) te-
chniques in that it does not require any knowledge on signal local-
ization sectors.
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