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ABSTRACT

A new pseudo-noise resampling technique is proposed to mitigate
the effect of outliers in Unitary ESPRIT. This scheme improves the
performance of Unitary ESPRIT in unreliable situations, where the
so-called reliability test has a failure. For this purpose, we exploit
a pseudo-noise resampling of a failed Unitary ESPRIT estimator
with a censored selection of “successful” resamplings recovering
the non-failed outputs of the reliability test.

1. INTRODUCTION

Unitary ESPRIT is a low-complexity modification of conventional
ESPRIT formulated in terms of real-valued computations [1], [2].
The final step of Unitary ESPRIT involves a special test [1] show-
ing whether the obtained Direction Of Arrival (DOA) estimate is
reliable. In case this test (in what follows referred to as there-
liability test) has a failure, the final step of the algorithm yields a
complex conjugate pair of eigenvalues instead of a real one as in the
non-failed case. The failed situation can be interpreted as anout-
lier corresponding to unresolved signal arrivals [1]. In the case of a
failed reliability test, it is recommended in [1] and [2] to restart the
algorithm with more reliable measurements or to use more snap-
shots when estimating the covariance matrix. However, in many
practical situations, neither more reliable measurements nor addi-
tional data snapshots are available.

In this paper, we propose another approach to mitigate such
type of outliers. Our approach does not require any additional data,
i.e., it exploits exactly the same data snapshots as the failured es-
timate itself. Instead of unavailable additional data, it utilizes syn-
thetically generated data as in the bootstrap technique. The key
idea of our approach is to use a pseudo-noise resampling for elim-
inating the failure and for recovering the outlier-free performance.
For this purpose, we exploit a censored selection of “successful” re-
samplings for which the reliability test has been passed in the sense
that the final step of Unitary ESPRIT yields a real eigenvalue pair.
Our technique uses the main idea of the estimator bank approach
[3], though we develop and apply another, more general type of
resampling [4]. Another important difference is that the standard
estimator bank approach [3] requiresa priori knowledge of source
localization sectors, whereas the reported technique is free of such
a limitation.

Supported in part by DFG under Grant Bo 568/22-1, INTAS under
Grant INTAS-93-642-Ext, and the Russian Foundation of Basic Research
under Grant 96-02-19462.

2. SIGNAL MODEL

Let a Uniform Linear Array (ULA) be composed ofM sensors
and let it receiveq (q < M ) narrowband sources impinging from
the directions�1; : : : ; �q. Assume that there are onlyN snapshots
x(1);x(2); : : : ;x(N) available. The observation vectors can be
modeled as

x(t) = As(t) +n(t) ; t = 1; 2; : : : ;N (1)

where
A = [a(�1); : : : ;a(�q)] (2)

is theM�q matrix of signal wavefronts,a(�) is theM�1 steering
vector,s(t) is theq � 1 vector of source waveforms, andn(t) is
theM � 1 vector of sensor noise. Hence, the measured array data
matrix

X = [x(1);x(2); : : : ;x(N)] (3)

can be modeled as
X = AS +N (4)

where
S = [s(1);s(2); : : : ;s(N)] (5)

is theq �N matrix of source waveforms, and

N = [n(1);n(2); : : : ;n(N)] (6)

is theM �N matrix of sensor noise.

3. UNITARY ESPRIT

According to [1], introduce the real-valued data matrix

T (X) = Q
H
M [X �MX

�

�N ]Q2N (7)

where�M is theM �M matrix with ones on its antidiagonal and
zeros elsewhere,
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are, for example, the sparse unitary matrices defined in [1],I l is the
l�l identity matrix,(�)H and(�)� stand for Hermitian transpose and
complex conjugate, respectively. TheM �M sample covariance
of the real-valued data matrix (7) is given by

R̂x =
1

2N
T (X)T (X)H (10)



Write the eigendecomposition of̂Rx as

R̂x = ES�SE
H
S +EN�NE

H
N (11)

whereq � q and(M � q) � (M � q) diagonal matrices�S and
�N contain theq andM � q sample signal and noise subspace
eigenvalues, respectively, whereas the columns of theM � q and
M � (M � q) matricesES andEN contain the sample signal and
noise subspace eigenvectors, respectively.

The Unitary ESPRIT algorithm is based on the solution of the
real-valued invariance equation [1]

K1ES| {z }
Rm�q

� �K2ES| {z }
Rm�q

(12)

by means of Least Squares (LS), Total LS (TLS), or Structured LS
(SLS) [2]. Here, them�M matricesK1 andK2 are given by

K1 = Q
H
m(J1 + J2)QM = 2RefQH

mJ2QMg (13)

K2 = Q
H
m(J1 � J2)QM = 2 ImfQH

mJ2QMg (14)

where them�M matricesJ1 andJ2 select the first and the lastm
(m < M ) rows of an arbitrary matrix with the vertical dimension
M [1], respectively. Write the eigendecomposition of the obtained
real-valuedq � q matrix� as

� = T
T
�1 (15)

where
 is theq � q diagonal matrix of eigenvalues


 = diagf!1; !2; : : : ; !qg (16)

andT is theq� q matrix of eigenvectors. Since� is a real-valued
matrix, it can happen that either all eigenvalues in (16) are real or
some of them appear as complex conjugate pairs. The latter case
corresponds to the unreliable DOA estimate when the associated
signal sources are not resolved (i.e., they merge and therefore result
into a complex conjugate eigenvalue pair). In [1], it is proposed to
exploit these eigenvalue properties in a reliability test:

Check whether all eigenvalues!i, i = 1; 2; : : : ; q of� in (15)
are real-valued.

If this test fails, it is recommended in [1] and [2] to start Unitary ES-
PRIT again with more reliable measurements, or to use more snap-
shots. However, in many practical situations neither more reliable
measurements nor additional data snapshots are available. The idea
of our approach presented below is to exploit synthetically gener-
ated (resampled) data instead of unavailable additional measured
data.

If the reliability test is satisfied in Unitary ESPRIT, the result-
ing signal DOA’s can be estimated in a straightforward manner. For
example, for a ULA with maximum overlap [1], the estimates of the
signal DOA’s are obtained as

�̂i = arcsin
�
�

�d
arctan(!i)

�
; i = 1; 2; : : : ; q (17)

whered is the interelement spacing, and� is the wavelength. If the
reliability test fails, it is meaningful to omit the complex parts of
the complex conjugate eigenvalues!i. Therefore, the estimates of
the signal DOA’s are then given by

�̂i = arcsin
�
�

�d
arctan(Ref!ig)

�
; i = 1; 2; : : : ; q (18)

Note that in this situation the outlier occurs, because each pair of
unresolved signals is attributed to a single real part of a complex
conjugate eigenvalue pair.

4. PSEUDO-NOISE RESAMPLING

Pseudo-noise-based techniques are known in a variety of applica-
tions (e.g., see [5] and [6]). In case of a failed reliability test, the
aim of our pseudo-noise resampling technique is to remove the out-
lier and to recover the Unitary ESPRIT performance usingexactly
the same data snapshotsthat have been used in Unitary ESPRIT.
The central idea is to resample the data matrix several times using
synthetically generated pseudo-noise [4], to run Unitary ESPRIT
“in parallel” for each such resampling, and then to select only the
“successful” runs for which the reliability test is satisfied and the
outlier is removed. TheM �N resampled data matrix is given by

Y =X +Z (19)

whereZ is theM � N matrix of independent zero-mean circular
pseudo-noise drawn from a random generator:

EfZg = 0 ; EfZZHg = �2ZN I ; EfZZT g = 0 (20)

Repeating the resampling runs (19), we can obtain more and more
“synthetically” generated data matrices.

In order to maintain an acceptable Signal to Noise Ratio (SNR)
in the synthetic (resampled) data, the variance of the pseudo-noise
�2Z should have approximately the same order as the variance�2

of the original noise (i.e,�2Z should not be too high). A similar
constraint is exploited in [6]. The consistent estimate of�2 is given
by [7]

�̂2 =
1

M � q
tracef�Ng = 1

M � q

MX
i=q+1

�i (21)

where�1 � �2 � � � � � �M are the ordered eigenvalues of the
sample covariance matrix̂Rx. In practice, it is meaningful to de-
termine the variance of the pseudo-noise as

�2Z = p � �̂2 (22)

wherep � 1 is a constant chosen by the user.
Motivated by the success of modern resampling schemes (e.g.,

bootstrap and jackknife), it is our goal that the pseudo-noiseZ will
redistribute the original noiseN between array sensors in a favor-
able way. Thereby, an improved estimation performance can be
achieved in the successful resampling runs (i.e., where the reliabil-
ity test is passed). In this approach, the reliability test can be inter-
preted as a censored selector of the results of the pseudo-random
resampling.

We stress that the synthetically generated noiseZ always de-
creases the SNR, and thereforethe resampling itself cannot bring
any performance improvement. However,it is no longer trueif we
use the reliability test (censoring) to select only outlier-free estima-
tors from the whole number of resampled estimators.

5. THE PROPOSED TECHNIQUE

Let us now formulate the new algorithm which employs the syn-
thetic (resampled) data (19) every time the reliability test has failed
for the measured data (3). Assume that afterK resampling runs
we obtainK “parallel” Unitary ESPRIT estimators, where each of
them is applied to a different resampled data matrix (19). Let the
ith estimator be

�
(i) = f�̂(i)l gql=1 (23)



where �̂(i)1 � �̂
(i)
2 � � � � � �̂

(i)
q is the ordered set of Unitary

ESPRIT DOA estimates corresponding to theith resampling run.
Then, provided that the data matrixX is fixed, these estimators are
said to form theestimator bank[3]

F = f�(i); i = 1; 2; : : : ;Kg (24)

of dimensionK.
Divide (24) in two disjoint subsets

F1 = f~�(i); i = 1; 2; : : : ; Jg (25)

F2 = f�(i); i = 1; 2; : : : ;K � Jg (26)

where the first subsetF1 containsJ estimators that pass the reli-
ability test, whereas the second subsetF2 contains the remaining
K � J estimators for which this test fails.

Table 1: Summary of the proposed algorithm

1. Compute the standard Unitary ESPRIT DOA estima-
tor using the measured data matrix (3).

2. Apply the reliability test to this estimator.

� If the reliability test has no failure then estimate
the signal DOA’s using (17) and go to step 4.

� If the reliability test fails then form the estima-
tor bank (24) using multiple pseudo-noise resam-
plings (19) of the measured data matrix (3).

3. Apply the reliability test to each resampled estimator
from the estimator bank (24).

� If any J (J > 0) estimators from (24) pass the re-
liability test then estimate the signal DOA’s using
(28).

� If the reliability test fails for all estimators from
(24) (i.e.,J = 0) then use standard Unitary ES-
PRIT and estimate the signal DOA’s using (18).

4. Stop the algorithm.

Consider the case when the first subset contains at least one
estimator, i.e., let0 < J � K. Let the estimators in the first subset
be given by

~�
(i)

= f~�(i)l gql=1 ; i = 1; 2; : : : ; J (27)

Apparently, an appropriate combination of the results of these “suc-
cessfully” resampled estimators is necessary to obtain a final esti-
mate. Assuming that the DOA’s in (27) are sorted as~�(i)1 < ~�(i)2 <

� � � < ~�
(i)
q for all i = 1; 2; : : : ; J , exploit the robust median aver-

ager to obtain the final DOA estimates [3]

�̂l = med f~�(1)l ; ~�(2)l ; : : : ; ~�(J)l g ; l = 1; 2; : : : ; q (28)

where for arbitrary realb1; b2 : : : ; bJ

med fb1; : : : ; bJg =

�
(c J

2
+ c J

2
+1)=2; if J is even

c J+1
2

; if J is odd
(29)
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Figure 1: RMSE’s vs. the SNR in the first example.
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Figure 2: Biases vs. the SNR in the first example.

fc1; : : : ; cJg = sort fb1; : : : ; bJg (30)

and sort f�g stands for the operator of sorting in ascending (de-
scending) order. The proposed algorithm is based on equations
(17), (18), (28) and is summarized in Table 1.

It should be noted that our algorithm requires more computa-
tions than Unitary ESPRIT by a factor1+Krout where0 � rout �
1 is the reliability test failure rate for Unitary ESPRIT. Note that ac-
cording to our simulations, typical values of the parameterrout are
concentrated approximately between0 and0:15. Taking into ac-
count the low computational complexity of Unitary ESPRIT, it can
be concluded that for a moderateK the proposed algorithm enables
an efficient implementation, which can be parallelized easily. Ap-
parently, this additional increase of the computational burden rel-
ative to the Unitary ESPRIT algorithm can be viewed as a natural
payment for the improved (outlier-free) performance.

6. SIMULATION RESULTS

In all simulations to follow, we assume a ULA ofM = 6 om-
nidirectional sensors with a half-wavelength spacing,N = 100
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Figure 3: RMSE’s vs. the SNR in the first example.
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Figure 4: RMSE’s vs. the SNR in the second example.

snapshots, uncorrelated equipower sources with zero-mean Gaus-
sian waveforms, and zero-mean white Gaussian noise. The pseudo-
noise parameterp = 0:2 was taken in (22) and all results were av-
eraged over 1000 simulation runs. Throughout the simulations, LS
Unitary ESPRIT was used, motivated by its better performance and
lower computational burden relative to TLS Unitary ESPRIT [2].

In the first example, we assumed three sources impinging from
�1 = 0�, �2 = 4�, and�3 = 30�. Fig. 1 shows the DOA es-
timation Root Mean Square Errors (RMSE’s) of Unitary ESPRIT
and the proposed algorithm (with four fixed values ofK) versus
the SNR. Note that all curves in this figure were averagedonly over
the simulation runs which correspond to outlying Unitary ESPRIT
estimates. These curves were additionally averaged over the first
two sources. Similar curves for the DOA estimation bias are dis-
played in Fig. 2. From these figures we observe that the restored
outlier-free estimates are biased and the bias does not decrease with
increasing SNR. This bias can be interpreted as a natural payment
for resolving closely spaced sources. However, the RMSE (which
includes the bias component, too) tends to decrease when the SNR
and parameterK grow. Note that both the bias and the RMSE are

significantly lower after the resampling than that in outlying Uni-
tary ESPRIT estimates, and this proves the positive effect of resam-
pling. From Figs. 1 and 2 one can conclude that the valueK = 30
is sufficient to obtain a satisfactory performance.

As the outlier rate may change with SNR, it is interesting to
study how the statistical performance is improved when the aver-
aging is done over all simulation runs, irrespective of the Unitary
ESPRIT performance in each run. Fig. 3 shows the RMSE’s of
Unitary ESPRIT and the proposed algorithm (withK = 30) versus
the SNR for the first example. In contrast to Fig. 1, the results in
this figure are averaged overall simulation runsas well as over the
first two sources.

In the second example, we assumed two sources with�1 = 0�

and�2 = 0:5�. The estimation RMSE’s of Unitary ESPRIT and
the proposed algorithm (withK = 30) versus the SNR are plotted
for this example in Fig. 4. Again, the results were averaged over all
simulation runs and both sources.

From Figs. 3 and 4 we can observe noticeable statistical perfor-
mance improvements achieved via the proposed algorithm relative
to standard Unitary ESPRIT. These improvements are more pro-
nounced in the specific “transition” region between the so-called
threshold and asymptotic domains, where outliers affect the statis-
tical performance of Unitary ESPRIT significantly.

7. CONCLUSIONS

The proposed resampling approach has been shown to enable the
mitigation of outliers in Unitary ESPRIT. Our technique results
in an improved statistical performance in the “transition” region,
where the outliers have a strong contribution to the statistical per-
formance of Unitary ESPRIT. The proposed algorithm is free of
typical limitations of other known resampling (estimator bank) te-
chniques in that it does not require any knowledge on signal local-
ization sectors.
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