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ABSTRACT

In this paper we present a Newton scoring algorithm for the
maximum likelihood separation and direction of arrival esti-
mation of constant modulus signals, using a calibrated array.
The main technica step is the inversion of the Fisher infor-
mation matrix, and an analytic formulafor the update step in
the Newton method. We present the algorithm based on the
derived update and discuss potential initializations. We also
present the computational complexity of the update. Finally
we present simulation results comparing the method to the
ESPRIT and the CM-DOA.

1. INTRODUCTION

Direction-of-arrival (DOA) estimation of multiplesignalsim-
pinging on an antennaarray isawell-studied problemin sig-
nal processing. “Traditional” methods exploit knowledge of
the array manifold or its structure without using information
on the signals. Example algorithms are MUSIC [1], MLE
[2], and WSF [3]. In all these methods the estimation of the
signals waveform is done by multiplying aweight matrix by
the received data matrix. This does not enable introduction
of constrains on the signals structure. Other, ‘blind’ methods
exploit properties of the signals such as non-Gaussianity [4],
or cyclostationarity [5]. These methods are more robust to
array manifold errors due to the extrainformation they use.

Recent studies of the problem of DOA estimation based
ontheCM property [6], yielded good sub-optimal algorithms.
However numerical study showsthat thesea gorithmsarein-
deed suboptimal inthe sensethat they do not achievethe CRB
insomecircumstances. Thissuggeststhat apossibleimprove-
ment is possible by using the maximum likelihood estimator.
The main problem with using the ML E together with the CM
property is the large dimension of the parameter space. This
makesthe estimation even using iterative numerical methods
very intractable.

In this paper we present exact analytic expression for the
inverse of the Fisher information matrix. This implies that
the updating of a scoring algorithm can be done linearly in
the number of samples, rather then cubic aswould bethecase
in direct numerical inversion of the information matrix. We

Amir Leshem was supported by the NOEMI project of the STW under
contract no. DEL 77-4476.

then devise ascoring algorithm for maximum likelihood esti-
mation based on initialization with a suboptimal method. Fi-
nally we present the computational complexity of the algo-
rithm and demonstrate its effectiveness by simulations. Due
to space limitations we omit all derivations. These will be
presented in a more detailed version.

2. PROBLEM FORMULATION

Consider an array with p sensorsreceiving ¢ narrow-band con-
stant modulus signals. Under standard assumptions for the
array manifold, we can describe the received signal asanin-
stantaneous linear combination of the source signals, i.e.,

x(t) = ABs(t) + n(t) 1)
where

o x(t) = [m1(t), -, x,(t)]T isapx 1 vector of received
signalsat timet,

e A = A(0) = [a(f1),---,a(dy)], where a(f) isthe
array responsevector for asignal fromdirection 6, and
0 =161, --,0,] isthe DOA vector of the sources,

e B = diag(B3) isthe channel gain matrix, with parame-
ters B = [B1,---, B,]7, where 3; € R * isthe ampli-
tude of the i-th signal asreceived by the array,

o s(t) = [s1(t),--,5,(t)]" isaq x 1 vector of source
signalsat timet,

e n(t) isthe p x 1 additive noise vector, which is as-
sumed spatially and temporally white Gaussian distrib-
uted with covariance matrix vI, where v = o2 isthe
noise variance.

Thederivation can be easily extended to spatially colored
Gaussian noise, with known covariance matrix Q, at the ex-
pense of greater notational complexity. We prefer to let the
interested reader do these changes, should he need them. In
our problem, the array is assumed to be calibrated so that the
array responsevector a(f) isaknown function. Asusual, we
require that the array manifold satisfies the uniqueness con-
dition.



We further assume that all sources have constant modu-
lus. Thisis represented by the assumption that for all ¢,
[s;(t)] =1 (¢ = 1,---,q). Unequal source powers are ab-
sorbedinthegain matrix B. Phase offsetsof the sourcesafter
demodulation are part of the s;. Thuswe can write s;(t) =

eI %t where ¢; (t) isthe unknown phase modul ation for source

i,andwedefineg(t) = [¢1(t), - - -
tor for al sources at time .

Finally, we assumethat NV samples|[x(1), - - -
available.

, ¢4(t)]* asthephasevec-

X(N)] are

3. THELIKELIHOOD, THE INFORMATION
MATRIX AND THE NEWTON UPDATE FORMULA

In this section we present an analytic expression for the in-

verse of the information matrix, and the update formulafor

the scoring algorithm. The results below extends the results

in[6], by computing analytically all theentriesof theinverse

information matrix, and not only the diagonal entries.
Thelikelihood function is given by

L(x|s,0,8,v) =
cexp {~L T, IIx(k) — ABs(k)|*}

— 1
wherec = NGRS

Let L(x[s,0,v) = log L(x|s, 8,3, v). After omitting con-
stants we obtain

N
1
= _pN1 S — AB 2.
L(x[s,8,8,v) = —pN logv ”k§:1||x(k) s(k)|l

Following [7], the estimation of the noise varianceis de-

coupled from all other parameters, and its bound can be com-
puted separately as

1/2
The remaining parameters are collected in the vector
p=lp()",-- o), 07, B7]".

Define

and D=

S, = diag(s(k)) da da ] .

B, S 0)

The Fisher information matrix associated to the estimation of
the parameter vector p can be derived as

H, 0 | AT ET

9 : :
Fv==>1 o Hy | AT ET 2

A, - Ax| T A?

E, - Ex| A T

where
H, := §Ep5ts (550y)" = Re(S;B*ATABS))
Ay = LtE% aifk))T = —Im(S;B*D*ABS;,)
E, = %E%(ag(ﬁk))T = —Im(S;A*ABS;)
= tE%(2L)T =V  Re(S;B*D*DBS;)
A= 5EJE(55)" = X, Re(S;A"DBS;)
Y = $ES5(55)T = Y1, Re(S;A*ASy)

Let Vg £, VoL, VL bethepartia gradientsof £ with
respect to the signals’ phasesin the the k’th sample, the sig-
nals DOA’'s and the signals' power respectively. They can
be computed as

Vo L = 551

SIE %Im(S(k)*B*A*e(k)).
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Vel = 2% =

oL Re(S*(k)A*e(k)) .
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k=1

and define the 2¢ x 2¢ matrix

[T AT Eu Ei2
\I’_{A T}_{Em Eoo |- ®)

]

The bounds on the individual parameters can be explic-
itly computed. The CRB for DOAs amplitudes and signa
phasesis

CRBN(g) = dlag (I:\I’ll — \]:’12\1’2_21\1’21]71) (6)

CRB (8) = diag ( [z — o U7/ ¥1] )

CRBy (¢(k)) =

: Ay

diag {H,* [T+ [A] EfJe~" | BF |H' .
[ )}

Notethat the number of samplesand the quality of DOA esti-
mation affectsthe bound on the phase estimation only through
the matrix &1,

Further use of the Schur formulaenablesusto compl etely
invert the information matrix and not only its diagonal ele-
ments. For inverting the matrix we first define four differ-
ent partsof the matrix. To simplify notation we disregard the
constant % remembering that its inverse has to multiply the

final result.
H, 0 AT ET
Fii1 = Fio = :

AL ER
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After some algebraic manipulationsinvolving the Schur
decomposition and Woodbury’s identity we obtain

(F 1)y ="

(F Yy =Fn) ' +GEIGT
(F 1) =G¥!
(F_1)21 — —\I’_IGT
where —1 AT —1uyT
Hl Al Hl El
G = : :
Hy'AL HYER
Finally to obtain the update direction definethe 24 x 1 vector

5= | Dt AHTV,L - VoL
YL BH, Wi £ — Vel

TheNewton updatedirectioninthescoringalgorithmisgiven
by:

5 (F1VL) ) =

o (k) %H;1v¢(k)£+

5[ H AL HOEQ o715
5 (F*1V£)M3 = —5¥l5

()
Note that although the expressions above seems dependent
on v thisisnot the case since V£ contains afactor % , which
cancels with the leading ¢, thisis very satisfactory as com-
pared to the many gradient based CMA algorithms, in which

an arbitrary learning constant appears.

4. THE ALGORITHM

Itiswell known that optimization methods based on second
order derivatives are superior to other methods, and that the
Newton algorithm is usually considered as “the standard
against which other algorithms are measured” [8]. Thebasic
algorithm is based on the following update scheme: Given
an estimate p,, of the parameter vector p weimprovethe es-
timate by

Pri1 =P —H ' (p)VI(py) )

where H(p,,) isthe Hessian matrix and V f (p,,) is the gra-
dient of the target function evaluated &t p,,. In statistical in-
ferencewhen maximizingthelikelihood function oneusually
prefersto replace the Hessian by its expected value, i.e. the
Fisher information matrix. Thischange contributesto thenu-
merical stability of the algorithm (see[9] pp. 177-182). Un-
der thischangethe algorithmis called aNewton type scoring

algorithm. Asiswell known in the numerical analysis liter-
ature although a unit step in the Newton direction

Fﬁl (PL)VL(py,)

asuresimprovement in the quadrati c approximation of thethe
likelihood function, it doesnot assureimprovementin thelike-
lihood functionitself. To overcomethisdifficulty alinesearch
along the Newton direction is devised, either for an optimal
step or for suboptimal step. The update step becomes thus

Pi+1 = Pr — AFKrl (Pr)VL(pL) (10)

where X is defined by
A =argmin L(py, = AF' () VL(py)  (11)

Theoptimal A can becomputed very efficiently usingthe good
initialization Ay = 1 which is optimal for the quadratic ap-
proximation of thelikelihood. For moredetailsabout the one-
dimensional optimization aswell asthe possible termination
criteriaof the Newton algorithm the reader isreferred to [ 8].

Finally we would like to discuss the initialization of the
search. For that purpose we propose two alternatives. The
firstis computationally simple but might fail in hard cases of
closely spaced sources while the other is almost optimal and
assures convergenceto the MLE at the price of further com-
plexity.

The firgt initialization scheme we proposeis by the ES-
PRIT algorithm. After estimating the DOA's an estimate of
thesignal using the unconstrained ML estimator, and project-
ing to the family of CM signals.

-1

§(t)= (A"(00A0) A*B)x(t)  (12)

5i(t)

|50

where 6; is the estimate of the DOA of the i'th signal and
§%(t) isthed'th component of §(t).

Thesecondinitialization method isbased ontheweighted
ACMA method [10]. Using the ACMA the CM sources are
separated based on their CM property. The DOA's are then
estimated by fitting the weight vectors given by the ACMA
to the array manifold [6].

To summarizewedescribethealgorithmusing theweighted
ACMA initialization:

sit) = (13)

1. Compute a separating matrix W using the W-ACMA
agorithm.

2. Estimate the initial DOA's by fitting the unstructured
matrix W to the array manifold. Generate astructured
separating matrix A based on the DOA's.

3. Edtimate theinitial signal estimates using (12)-(13)
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Figure1: DOA estimation accuracy and SINR vs. separation
(a) DOA estimation accuracy vs. separation, (b) SINR vs.
separation.

4. Until termination condition is satisfied

a. Estimate the Newton direction using (8)
b. Compute A using (11).
¢. Update the parameters using (10).

End.

A detailed computation of the complexity of the update
step yields (6¢> + 5pg + 7¢> + p+ 8¢ + T)N + ¢*>(3p +
9¢q + 13) + 5¢ many operations. The dominant number of
operationsis O (64> N) real operations.

5. SSMULATION RESULTS

In this section we describe some simulations demonstrating
the efficiency of the proposed ML E method. We present both
signal to interference plus noise (SINR) improvement, and
DOA performance. The interesting conclusion is that while
both initialization methods are good for obtaining the DOA
estimation, and yield identical results, the ESPRIT initializa-
tion performsworsefor separation of thesignal s, and the phase
estimates tends to converge to local minima.

In the experiment we have used a 5 elements ULA, and
three sources. The number of ssmpleswasheldfixedas NV =
20. We have performed 400 Monte-Carlo trials. The central
source was fixed at 0° while the two other sources were lo-
catedat —A°, A°, and A waschangedfrom4° to 30° at steps
of 2°. We show that the MLE outperforms both the ESPRIT
and the CM-DOA algorithmsover the completerange of sep-
arations. However at the very small separationsthe MLE it-
erationsincreased the DOA estimation RMSE. Thisiscaused
by convergencefailure of theiterationsin some cases.

Notice that since the DOA estimation achieved the same
performanceno matter what theinitializationwas. we present
only the initialization with the CM-DOA.
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