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ABSTRACT

In this paper we present a Newton scoring algorithm for the
maximum likelihood separation and direction of arrival esti-
mation of constant modulus signals, using a calibrated array.
The main technical step is the inversion of the Fisher infor-
mation matrix, and an analytic formula for the update step in
the Newton method. We present the algorithm based on the
derived update and discuss potential initializations. We also
present the computational complexity of the update. Finally
we present simulation results comparing the method to the
ESPRIT and the CM-DOA.

1. INTRODUCTION

Direction-of-arrival (DOA) estimation of multiple signals im-
pinging on an antenna array is a well-studied problem in sig-
nal processing. “Traditional” methods exploit knowledge of
the array manifold or its structure without using information
on the signals. Example algorithms are MUSIC [1], MLE
[2], and WSF [3]. In all these methods the estimation of the
signals waveform is done by multiplying a weight matrix by
the received data matrix. This does not enable introduction
of constrains on the signals structure. Other, ‘blind’ methods
exploit properties of the signals such as non-Gaussianity [4],
or cyclostationarity [5]. These methods are more robust to
array manifold errors due to the extra information they use.

Recent studies of the problem of DOA estimation based
on the CM property [6], yielded good sub-optimal algorithms.
However numerical study shows that these algorithms are in-
deed suboptimal in the sense that they do not achieve the CRB
in some circumstances. This suggests that a possible improve-
ment is possible by using the maximum likelihood estimator.
The main problem with using the MLE together with the CM
property is the large dimension of the parameter space. This
makes the estimation even using iterative numerical methods
very intractable.

In this paper we present exact analytic expression for the
inverse of the Fisher information matrix. This implies that
the updating of a scoring algorithm can be done linearly in
the number of samples, rather then cubic as would be the case
in direct numerical inversion of the information matrix. We
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then devise a scoring algorithm for maximum likelihood esti-
mation based on initialization with a suboptimal method. Fi-
nally we present the computational complexity of the algo-
rithm and demonstrate its effectiveness by simulations. Due
to space limitations we omit all derivations. These will be
presented in a more detailed version.

2. PROBLEM FORMULATION

Consider an array with p sensors receiving q narrow-bandcon-
stant modulus signals. Under standard assumptions for the
array manifold, we can describe the received signal as an in-
stantaneous linear combination of the source signals, i.e.,

x(t) = ABs(t) + n(t) (1)

where

� x(t) = [x1(t); � � � ; xp(t)]
T is a p�1 vector of received

signals at time t,

� A = A(�) = [a(�1); � � � ; a(�q)], where a(�) is the
array response vector for a signal from direction �, and
� = [�1; � � � ; �q ] is the DOA vector of the sources,

� B = diag(�) is the channel gain matrix, with parame-
ters � = [�1; � � � ; �q ]

T , where �i 2 jjR + is the ampli-
tude of the i-th signal as received by the array,

� s(t) = [s1(t); � � � ; sq(t)]
T is a q � 1 vector of source

signals at time t,

� n(t) is the p � 1 additive noise vector, which is as-
sumed spatially and temporally white Gaussian distrib-
uted with covariance matrix �I, where � = �2 is the
noise variance.

The derivation can be easily extended to spatially colored
Gaussian noise, with known covariance matrixQ, at the ex-
pense of greater notational complexity. We prefer to let the
interested reader do these changes, should he need them. In
our problem, the array is assumed to be calibrated so that the
array response vector a(�) is a known function. As usual, we
require that the array manifold satisfies the uniqueness con-
dition.



We further assume that all sources have constant modu-
lus. This is represented by the assumption that for all t,
jsi(t)j = 1 (i = 1; � � � ; q). Unequal source powers are ab-
sorbed in the gain matrixB. Phase offsets of the sources after
demodulation are part of the si. Thus we can write si(t) =
ej�i(t), where�i(t) is the unknownphase modulation for source
i, and we define�(t) = [�1(t); � � � ; �q(t)]

T as the phase vec-
tor for all sources at time t.

Finally, we assume that N samples [x(1); � � � ;x(N)] are
available.

3. THE LIKELIHOOD, THE INFORMATION
MATRIX AND THE NEWTON UPDATE FORMULA

In this section we present an analytic expression for the in-
verse of the information matrix, and the update formula for
the scoring algorithm. The results below extends the results
in [6], by computing analytically all the entries of the inverse
information matrix, and not only the diagonal entries.

The likelihood function is given by

L(xjs;�;�; �) =

c exp
n
� 1

�

PN

k=1 kx(k)�ABs(k)k
2
o

where c = 1
(2�)N ( �

2
)pN .

Let L(xjs;�; �) = logL(xjs;�;�; �). After omitting con-
stants we obtain

L(xjs;�;�; �) = �pN log � �
1

�

NX
k=1

kx(k)�ABs(k)k2:

Following [7], the estimation of the noise variance is de-
coupled from all other parameters, and its bound can be com-
puted separately as

CRBN (�) =
�2

pN
:

The remaining parameters are collected in the vector

� = [�(1)T ; � � � ;�(N)T ; �T ; �T ]T :

Define

Sk = diag(s(k)) and D =

�
da

d�
(�1); � � � ;

da

d�
(�q)

�
:

The Fisher information matrix associated to the estimation of
the parameter vector � can be derived as
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Letr�(k)L;r�L;r�L be the partial gradients ofLwith
respect to the signals’ phases in the the k’th sample, the sig-
nals’ DOA’s and the signals’ power respectively. They can
be computed as

r�(k)L = @L
@�(k) =

2

�
Im (S(k)�B�A�e(k)) :

r�L = @L
@�

=
2

�

NX
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Re (S�(k)B�D�e(k))

r�L = @L
@�

=
2

�

NX
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and define the 2q � 2q matrix

	 =

�
� �T

� �

�
�

�
�11 �12

�21 �22

�
: (5)

The bounds on the individual parameters can be explic-
itly computed. The CRB for DOAs amplitudes and signal
phases is

CRBN (�) = diag
��
	11 �	12	

�1
22 	21

��1�
CRBN (�) = diag

��
	22 �	21	

�1
11 	12

��1� (6)

CRBN (�(k)) =

diag

�
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�
I+ [�T
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�
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k

��
:

(7)
Note that the number of samples and the quality of DOA esti-
mation affects the bound on the phase estimation only through
the matrix	�1.

Further use of the Schur formula enables us to completely
invert the information matrix and not only its diagonal ele-
ments. For inverting the matrix we first define four differ-
ent parts of the matrix. To simplify notation we disregard the
constant 2

�
, remembering that its inverse has to multiply the

final result.

F11 =

2
64
H1 0

. . .
0 HN

3
75 F12 =

2
64
�T

1 ET
1

...
...

�T
N ET

N

3
75



F21 =

�
�1 ; � � � ; �N

E1 ; � � � ; EN

�
F22 =

�
� �T

� �

�

After some algebraic manipulations involving the Schur
decomposition and Woodbury’s identity we obtain

(F�1)22 = 	�1

(F�1)11 = (F11)
�1 +G	�1GT

(F�1)12 =G	�1
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Finally to obtain the update direction define the 2q�1 vector

� =

" PN

i=1�iH
�1
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i=1EiH
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#

The Newton update direction in the scoring algorithm is given
by:

�
2

�
F�1rL

�
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(8)
Note that although the expressions above seems dependent
on � this is not the case since rL contains a factor 2

�
, which

cancels with the leading �
2 , this is very satisfactory as com-

pared to the many gradient based CMA algorithms, in which
an arbitrary learning constant appears.

4. THE ALGORITHM

It is well known that optimization methods based on second
order derivatives are superior to other methods, and that the
Newton algorithm is usually considered as “the standard
against which other algorithms are measured” [8]. The basic
algorithm is based on the following update scheme: Given
an estimate �k of the parameter vector � we improve the es-
timate by

�k+1 = �k �H
�1(�k)rf(�k) (9)

where H(�k) is the Hessian matrix and rf(�k) is the gra-
dient of the target function evaluated at �k. In statistical in-
ference when maximizing the likelihood function one usually
prefers to replace the Hessian by its expected value, i.e. the
Fisher information matrix. This change contributes to the nu-
merical stability of the algorithm (see [9] pp. 177-182). Un-
der this change the algorithm is called a Newton type scoring

algorithm. As is well known in the numerical analysis liter-
ature although a unit step in the Newton direction

F�1N (�k)rL(�k)

asures improvement in the quadratic approximationof the the
likelihood function, it does not assure improvement in the like-
lihood function itself. To overcome this difficulty a line search
along the Newton direction is devised, either for an optimal
step or for suboptimal step. The update step becomes thus

�k+1 = �k � �F�1N (�k)rL(�k) (10)

where � is defined by

� = argmin
�

L(�k � �F�1N (�k)rL(�k)) (11)

The optimal� can be computed very efficiently using the good
initialization �0 = 1 which is optimal for the quadratic ap-
proximation of the likelihood. For more details about the one-
dimensional optimization as well as the possible termination
criteria of the Newton algorithm the reader is referred to [8].

Finally we would like to discuss the initialization of the
search. For that purpose we propose two alternatives. The
first is computationally simple but might fail in hard cases of
closely spaced sources while the other is almost optimal and
assures convergence to the MLE at the price of further com-
plexity.

The first initialization scheme we propose is by the ES-
PRIT algorithm. After estimating the DOA’s an estimate of
the signal using the unconstrained ML estimator, and project-
ing to the family of CM signals.

ŝ0(t) =
�
A�(�̂i)A(�̂i)

��1
A�(�̂i)x(t) (12)

ŝi(t) =
ŝ0i(t)

jŝ0i(t)j
(13)

where �̂i is the estimate of the DOA of the i’th signal and
ŝ0i(t) is the i’th component of ŝ(t).

The second initialization method is based on the weighted
ACMA method [10]. Using the ACMA the CM sources are
separated based on their CM property. The DOA’s are then
estimated by fitting the weight vectors given by the ACMA
to the array manifold [6].

To summarize we describe the algorithm using the weighted
ACMA initialization:

1. Compute a separating matrix Ŵ using the W-ACMA
algorithm.

2. Estimate the initial DOA’s by fitting the unstructured
matrix Ŵ to the array manifold. Generate a structured
separating matrix Â based on the DOA’s.

3. Estimate the initial signal estimates using (12)-(13)
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Figure 1: DOA estimation accuracy and SINR vs. separation
(a) DOA estimation accuracy vs. separation, (b) SINR vs.
separation.

4. Until termination condition is satisfied

a. Estimate the Newton direction using (8)

b. Compute � using (11).

c. Update the parameters using (10).

End.

A detailed computation of the complexity of the update
step yields (6q3 + 5pq + 7q2 + p + 8q + 7)N + q2(3p +
9q + 13) + 5q many operations. The dominant number of
operations is O(6q3N) real operations.

5. SIMULATION RESULTS

In this section we describe some simulations demonstrating
the efficiency of the proposed MLE method. We present both
signal to interference plus noise (SINR) improvement, and
DOA performance. The interesting conclusion is that while
both initialization methods are good for obtaining the DOA
estimation, and yield identical results, the ESPRIT initializa-
tion performs worse for separation of the signals, and the phase
estimates tends to converge to local minima.

In the experiment we have used a 5 elements ULA, and
three sources. The number of samples was held fixed asN =
20. We have performed 400 Monte-Carlo trials. The central
source was fixed at 0o while the two other sources were lo-
cated at��o;�o, and� was changed from 4o to 30o at steps
of 2o. We show that the MLE outperforms both the ESPRIT
and the CM-DOA algorithms over the complete range of sep-
arations. However at the very small separations the MLE it-
erations increased the DOA estimation RMSE. This is caused
by convergence failure of the iterations in some cases.

Notice that since the DOA estimation achieved the same
performanceno matter what the initialization was. we present
only the initialization with the CM-DOA.

6. REFERENCES

[1] R. Schmidt, A Signal Subspace Approach to Multiple
Emitter Location and Spectral Estimation. PhD thesis,
Stanford university, 1981.

[2] I. Ziskind and M. Wax, “Maximum likelihood local-
ization of multiple sources by alternating projections,”
IEEE Trans. Acoust. Speech Signal Processing, vol. 36,
pp. 1553–1560, Oct. 1988.

[3] M. Viberg and B. Ottersten, “Sensor array processing
based on subspace fitting,” IEEE Trans. Acoust. Speech
Signal Processing, vol. 39, pp. 1110–1121, May 1991.

[4] B. Porat and B. Friedlander, “Direction finding algo-
rithms based on higher order statistics,” IEEE Trans.
Signal Processing, vol. 37, pp. 2016–2024, Sept. 1991.

[5] G. Xu and T. Kailath, “DOA estimation via exploita-
tion of cyclostationarity-A combination of spatial and
temporal processing,” IEEE Trans. Signal Processing,
vol. 40, pp. 1775–1785, July 1992.

[6] A. Leshem and A. van der Veen, “Bounds and algo-
rithm for direction finding of phase modulated signals,”
in Proc. IEEE SP Workshop on Stat. Signal and Array
Proc., Sept. 1998.

[7] P. Stoica and A. Nehorai, “MUSIC, maximum likeli-
hood, and Cramer-Rao bound,” IEEE Trans. Acoust.
Speech Signal Processing, vol. 37, pp. 720–743, May
1989.

[8] P. Gill, W. Murray, and M. Wright, Practical optimiza-
tion. Academic Press, 1981.

[9] S. Kay, Fundumentals of statistical signal processing:
Estimation theory. PTR, Prentice Hall, 1993.

[10] A. van der Veen, “Weighted ACMA.” Preprint July
1998. To be submitted to ICASSP 1999.


