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ABSTRACT

Blind source separation aims to extract a set of independentsignals
from a set of observed linear mixtures. After whitening the sen-
sor output, the separation is achieved by estimating an orthogonal
transformation, which in the real-mixture two-source two-sensor
case is entirely characterized by a single rotation angle. This con-
tribution studies an estimator of such an angle. Even though it
is derived from geometric notions based on the scatter-plots of
the signals involved, it is found, empirically, to exhibit a perfor-
mance clearly up to the mark of other methods based on opti-
mality criteria and, theoretically, to improve and generalize one of
such procedures. The simplicity of the suggested estimator results
in a straightforward adaptive version, which converges regardless
of the source distribution, for quite mild conditions, and whose
asymptotic analysis is easy to carry out. The applicability of the
estimator in a full separation system is also illustrated.

1. INTRODUCTION

In a variety of applications one faces the recovery of a set of unob-
servedsourcesignals from the output of a set of sensors which
measure a linear mixture of the sources, where the coefficients
of the mixture are also unknown. Instances of this problem, the
so-called blind source separation (BSS), are encountered in many
different areas, ranging from array processing (direction of arrival
estimation, recognition of sources fromunknown arrays) to psy-
chology (factor analysis of psychological data), and encompass
others such as communications (blind CDMA), speech processing
(cocktail party problem) or medical science (antepartum fetal ECG
extraction), to name only a few.

The BSS problem has become an emerging research area since
the late eighties [7]. The crux of the separation is the source sta-
tistical independence assumption. The recovery of the sources is
then proven to be equivalent to obtaining a set of independentcom-
ponents at the separator output. To that end, it is convenient to
adopt a two-step strategy [5], [9]: in the first step, the measure-
ments are decorrelated and normalized via conventional second-
order techniques (principal component analysis); in the second
step, higher-order independence is sought. In algebraic terms, it
is easily shown that after the first step only an orthogonal matrix
needs to be obtained to accomplish the separation. Since any or-
thogonal matrix can be decomposed as the product of elementary
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Givens plane rotations, it seems fairly reasonable to take a pair-
wise approach, processing the whitened output in pairs, until con-
vergence. Even though the convergence of such a strategy has not
been theoretically proved yet, it is strongly supported by empiri-
cal evidence [4], [5], [6]. In the noiseless two-source two-sensor
scenario, an analytical expression for the rotation angle is found
in [4], as a function of the cross-cumulants of the whitened obser-
vations. Lately, research in the area has witnessed an increasing
interest in the use of optimization criteria, through the maximiza-
tion/minimization ofcostor contrast functions. In [5], the angles
are obtained through the maximization of a contrast function made
up of the marginal cumulants of the whitened sensor output. Simi-
lar cost functions are regarded in [3] to create adaptive separators.
The maximum-likelihood (ML) principle is considered in [6], and
another closed-form expression of the rotation angle is achieved by
optimizing the Gram-Charlier expansion of the observation likeli-
hood function. To arrive at that expression, the sources are as-
sumed to fulfil the validity conditions of the mentioned expansion
and to have the same distribution, which diminishes its applicabil-
ity.

Without direct recourse to any optimization criterion, as op-
posed to the aforementioned references, another closed-form ex-
pression to estimate the relevant angular parameter is derived
herein. Interestingly enough, the suggested expression is proven to
generalize the approximate ML estimator found in [6], being able
to deal with almost any source distribution combination. On the
other hand, experiments prove the estimator to perform at the level
of quality of other methods based on optimality criteria. In addi-
tion, the simplicity of the proposed estimator makes its adaptive
version straightforward to obtain, yielding an adaptive algorithm
which converges under fairly mild conditions, and does it fast, and
whose asymptotic performance analysis is easily analyzed. Other
appealing attributes of the angle estimator are highlighted through-
out the text.

2. PROBLEM STATEMENT

The objective of the BSS is the reconstruction of a set ofq source
signalsxk = [x1(k); : : : ; xq(k)]

t 2 Rq from a set ofp > q

instantaneous linear mixtures measured at thesensor output,yk =
[y1(k); : : : ; yp(k)]

t 2 Rp, symbolk representing a time index.
The noiseless BSS model may be expressed in matrix form as:

yk = Mxk; k = 1; 2; : : : ; (1)

where matrixM = (mij) 2 Rp�q contains the mixture coeffi-
cients and is hence referred to asmixing or transfer matrix. Only



two main hypotheses are counted on to achieve the source ex-
traction and mixing matrix identification: the statistical indepen-
dence of the source components and the linear independence of
the columns ofM . For the latter matrix, no a priori structure is
assumed, and hence the term “blind”. The separation is carried out
by estimating aseparating matrixW such as theglobal mixing-
unmixing system, given byG = WM , exhibits the formPD,
P being a permutation matrix andD a regular diagonal matrix.
Therefore, an indeterminacy regarding both the ordering and the
scale of the recovered sources is allowed, and is indeed inherent to
the problem. Consequently, the convention may be adopted, with-
out loss of generality, that the source signals possess an identity
covariance matrix:Rx , E[xxt] = I. If the sources are to be
recovered preserving their original variance, the diagonal entries
of D must be unit-norm, the global matrixG then becoming a
quasiidentity matrix [3].

Usually, the source extraction is accomplished in two steps,
associated to the identification of the mixing matrix in two parts,
M = BQ, with B a regular matrix andQ an orthogonal one
(polar decomposition). The first step obtains an estimate ofB by
means of standard second-order techniques. This process is called
(pre-)whitening, since transforming the observations according to
the pseudoinverse of such a matrix results in the set of whitened
components (i.e., decorrelated and unit-variance normalized):

zk = B
�
yk = Qxk: (2)

Hence,B� is known aswhitening matrix. Many different ways
of performing pre-whitening can be found in theliterature [4], [5].
We will concentrate on the estimation of the orthogonal matrixQ.

3. AN OPTIMIZATION-FREE ESTIMATOR

Resorting to the notion of pairwise processing, let us focus on
the two-signal case, in which matrixQ reduces to an elementary
Givens plane rotation:

Q =

�
cos � � sin �
sin � cos �

�
: (3)

The estimation of this matrix, then, reduces to the estimation of a
single parameter, angle�. From equations (2) and (3), the scatter-
plot points of the source signals and the whitened observations are
rotated versions of one another. In complex form, this relation is
readily expressed as:

x1(k) + jx2(k) = �kej�
0

k

z1(k) + jz2(k) = �kej�k

�
�k = �

0

k + �: (4)

The mean point orcentroidof the whitened-sensor scatter points
to the fourth power is

� , E[(z1 + jz2)
4] = E[�4ej4�]; (5)

and develops into

� = E[(x1 + jx2)
4]ej4�; (6)

by taking into account the relationships in (4). The expectation
in the above equation is equal to the source kurtosis sum,�x40 +
�x04, where�xmn denotes the(m+ n)th-order cumulant [8] of the
source signals. The sources being unknown, that sum does not

seem directly available. However, it can be computed from the
whitened sensor outputs, as


 , E[(z21 + z
2

2)
2]� 8 = E[�4]� 8 = �

x
40 + �

x
04: (7)

In conclusion, providing the source kurtosis sum is not null, angle
� can be estimated through:

�̂EML =
1

4
angle(� � sign(
)): (8)

Note that no assumptions at all have been made about the
source distribution to arrive at (8). It may be applied as long as
the source kurtosis sum is distinct from zero. A strikingly similar
expression (actually the same when the argument of the centroid
(5) lies in[��

2
; �
2
]) is obtained in [6] through the ML principle:

�̂ML =
1

4
arctg

P
k
�4k sin 4�kP

k �
4

k cos 4�k
: (9)

But this latter, due to the restrictions of the Gram-Charlier expan-
sion and other assumptions made during its development, is only
valid for symmetric sources with identical distribution and kurto-
sis value in the range[0; 4]. Moreover, estimator (9) is shown [10]
to be biased for� 62 [��

8
; �

8
], whereas (8) provides the necessary

full 90-degree estimation interval. Therefore, expression (8) can
be regarded as a generalization of the approximate ML criterion
developed in [6], even though no such optimization approach has
been taken to determine (8). For these reasons, estimator (8) is
referred to asExtended ML (EML). A more detailed link between
these two approaches is made in [10] and [11]. A couple of other
remarkable features of the above estimator are pointed out next.

Orthogonal invariance. The error introduced in estimator (8)
by finite-size sample is merely caused by the source signals,
through the sample estimates of the expectations in (6) and (7).
From this observation, it is easily proven [12] that estimator (8) is
orthogonal invariant, thus providing full invariance in the noise-
less case and thereby uniform performance characteristics: the
source estimation becomes independent of the particular value of
the mixing matrix [2].

Asymptotic properties. Both � and
 can be expanded as a
function of the whitened sensor output cumulants [10]. By con-
sistency of cumulant sample estimates, batch estimator (8) iscon-
sistentandasymptotically unbiased. An exhaustive study of its
asymptotic properties is carried out in [11], where a geometrical
explanation of the method can also be found.

Extension to more than two signals. In the case we are dealing
with more than two mixtures of (possibly) more than two sources,
estimator (8) can be applied in turn to each pair of whitened mea-
surements. This pairwise processing idea was already introduced
in [4] and mathematically justified in [5]. There is empirical sup-
port for this extension with (8), on synthetic [11] as well as on real
data [13]. It is found that the number of sweeps over the signal
pairs necessary for convergence is about1 +

p
q, which agrees

with the value suggested in [5].
How estimator (8) performs when noisy observations are pro-

cessed is considered in the following section.

4. ASSESSMENT AND COMPARISON

Figures 1 and 2 test the behaviour of the EML method in the pres-
ence of noise and compare it with the method described in [5],



which is referred to asHOEVD (Higher-Order Eigenvalue De-
composition) herein. The HOEVD aims at maximizing the sum
of squares of the 4th-order output cumulants, criterion which is
proved to ensure maximum independence at that order at the out-
put of the separator. To complete the EML the singular value de-
composition (SVD) is used to whiten the measurements, exactly
as explained in [5], so that the only difference between the two
procedures is the way the pairwise rotations are carried out. The
performance index computed (also introduced in [5]) is the gap"

between the true mixing matrix and the estimated one, modulo a
post-multiplicative factor of the formPD. The better the separa-
tion, the closer" to zero. All signals are composed of 5000 sam-
ples. Mixtures are obtained with a fixed mixing matrix, which,
inspired by the experiments in [5], is selected as Toeplitz circulant
with the row vector[1; �2; 3]. The noise signals are mutually
independent as well as independent of the sources. The signal-to-
noise ratio (SNR) is defined sensor-wise, that is, as the power due
to the sources over the power due to the noise at each sensor, and is
chosen to be the same for all sensors. With 3 uniformly-distributed
sources and a 3-sensor mixture corrupted by Gaussian noise, the
mean (�EML) and standard deviation (�EML) obtained for" by the
EML method over 100 independentMonte Carlo runs at each value
of SNR in 1-dB steps is shown in figure 1. The same figure plots
the results (�HOEVD and�HOEVD) obtained over the same mixture
and noise realizations by the HOEVD. Both methods provide equal
asymptotic behaviour (extreme SNR sides). However, the EML
outperforms the HOEVD (lower mean and standard deviation of
") for low absolute values of SNR, precisely when it becomes
more difficult to discern the signals of interest from the noise. The
curves obtained under the same simulation conditions as above but
with uniformly distributed noise are more discriminant, as seen in
figure 2. Remark the anomalous behaviour displayed by the HO-
EVD in the mentioned SNR range, whereas the EML obeys a more
homogeneous performance.

These dissimilar performances seem to be related to the par-
ticular choice of the source and noise distributions, as well as the
mixing structure. Actually, a number of other experiments with
different distributions and mixing matrices indicate that in gen-
eral the results offered by both methods are very close. This fact
is illustrated by figure 3, obtained againunder the above condi-
tions but with an arbitrarily chosen non-Toeplitz mixing matrix
M = [1; �1; 1; 2; 3; 4; �2; 1; 3].

5. ADAPTIVE IMPLEMENTATION

The adaptive extension of estimator (8) is equivalent to the adap-
tive estimation of the centroid location (5) and the source kurtosis
sum (7). Calling�k the scatter-diagram point of the pre-whitened
observations to the fourth power at time instantk:

�k = (z1(k) + jz2(k))
4 = �

4

kej4�k ; (10)

then� and
 in (5) and (7), respectively, can be adaptively esti-
mated through:

�k = (1� �k)�k�1 + �k�k (11)


k = (1� �k)
k�1 + �k(j�kj � 8); (12)

where�k is the adaption coefficient at iterationk, posing the well-
known compromise between accuracy and convergence speed. At
each iterationk, estimateŝ�k of � are obtained simply by inserting
(11) and (12) into (8). From a counter-rotation of this angle, the

corresponding source-signal sample at iterationk can be obtained.
Such an adaptive procedure is namedAdaptive EML (AEML), af-
ter its batch equivalent. Equation (11) admits the standard stochas-
tic algorithm form:

�k = �k�1 + �kH(�k�1; �k); H(�; �) = � � �;

(and analogously for (12)) and consequently the AEML asymp-
totic performance (for�k small enough) can be analyzed with the
conventional tools available for the study of such a class of algo-
rithms [1]. Benefiting from those devices, the AEML algorithm
described above is proven to converge to the right solution un-
der the same conditions of its batch counterpart, i.e., as long as
�x40 + �x04 6= 0. In addition, its stability does not depend on the
mixture structure. On the other hand, an analytical expression for
the asymptotic probability density function (pdf) of�̂k is deter-
mined in [12]. For sufficiently small values of�, the asymptotic
variance of̂�k is found to be in the i.i.d. case:

�
2

�̂
� ��2�

2j�x
40

+ �x
04
j2 : (13)

Observe that�2� can be written as a function of the source signals
only, and hence the performance of the adaptive estimator only de-
pends on them as well. The invariance property of batch estimator
(8) (section 3) is thus inherited by its adaptive implementation.

Fast convergence. In order to estimate�, the pertinent param-
eter is indeed the orientation of centroid�, rather than its precise
location. Simulations demonstrate [12] that this orientation is ac-
curately estimated in just a few iterations (nearly independent of
the adaption coefficient for a given mixture realization) when the
centroid is initialized at the origin of the complex plane.

Figure 4 plots the trajectory of the global matrix coefficients
obtained by the AEML (extended to more than two signals in a
similar fashion as done for the batch counterpart) for the adaptive
separation of 4 pseudorandom binary sources from 4 noiseless in-
stantaneous linear mixtures. The pre-whitening strategy of [3] is
employed,� being its corresponding adaption coefficient. A suc-
cessful separation is achieved, sinceG converges to a quasiidentity
matrix.

6. CONCLUSIONS

The BSS method studied in this paper is not (explicitly, at least)
derived relying on optimization criteria. Despite this, it is proven
to possess some very attractive features and to perform at the same
(and even higher) level of quality than other methods specially de-
signed to meet certain optimality principles.

At this point, as the question mark in the title evokes, whether
such an optimization criterion is hidden behind the method re-
mains to be investigated. Other paths of further research include
the extension to complex mixtures, a different generalization to
more than two signals, and undertaking the theoretical study of the
noise effects.
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Figure 2: Mean (�) and standard deviation (�) of gap" for a mix-
ture of 3 uniformly distributed sources in additive uniform noise.
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Figure 4: Evolution of the global system in the separation of four
binary sources from a four-sensor mixture by the AEML method,
with � = � = 10�2.


