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ABSTRACT

Recently a new time-domain method has been presented
for deconvolution [1]. This multidimensional method
completely eliminates the problems of the previous
methods in one dimension and covers a reasonable part
of the solutions in multidimensions. In this paper, we
present some of the properties of this method. We will
especially focus on the frequency domain behaviour of
the algorithm as well as the performance under numerical
errors and errors due to noise. In addition we will present
examples of the applications including blind
deconvolution with a modified NAS-RIF algorithm.

I. INTRODUCTION

Several researchers are interested on the deconvolution
problem which is one of the most important problem of
linear system theory. Deconvolution can be seen as an
inverse filtering for removing the effects of linear
convolution operator. There are several different
approaches developed for deconvolution throughout the
years. Wiener filtering [2], Fourier domain techniques
[3], homomorphic deconvolution [4], and iterative
approaches [5] are only a subset of currently available
methods. Unfortunately almost all of these methods
suffer from the problems of stability, division by zero,
approximation and computational complexity. We have
proposed a new time-domain deconvolution (TDD)
algorithm [1] where all of these problems are solved.

This multidimensional TDD method results exact
solution for one dimensional case without any of the
problems associated with the previous methods. In
multidimensional case, TDD method has always
solutions when the convolution kernel satisfies det(h)=0
condition. Even when this condition is not satisfied, one
can still solve the problem depending on the value of
det(h) and the split factor which is related to the length of
the input signal.

In this paper, we discuss several properties of the TDD
method. We show that what TDD method does in time-
domain corresponds to the pole-zero cancellation in
Fourier domain with some appropriate spectral shaping.
In addition, we will discuss how the spread of

convolution kernel zeros and the split factor affect the
noise behaviour of the TDD method. One interesting
property of the TDD method is that there are several
copies of the input signal at the output of deconvolution.
The number of input images depends on the number of
zeros of the convolution filter and the distance between
images is equal to the split factor. It turns out that each
input image has different noise sensitivity and it is
always better to choose the input image, which shows up
the first.

TDD method has been employed for both one and
multidimensional signals. In addition to direct
deconvolution when the output and convolution kernel
are known, TDD method is also used for blind
deconvolution problem. A modified non-negativity and
support recursive inverse filter (NAS-RIF) structure is
used with TDD block [6]. In blind deconvolution, input
signal is required to be found without any knowledge on
the convolution kernel.

Another interesting problem is the circular
deconvolution. It turns out that circular deconvolution is
possible if the circular Toeplitz matrix, H, is nonsingular.
Note that singularity is not an issue for linear convolution
and deconvolution is always possible for one-
dimensional case.

There are several applications of the deconvolution
operator [7]. Image restoration for medicine [8] and
astronomy [6] employs different algorithms, all of which
use a deconvolution operation. Blurring effects due to
moving objects and focusing of the camera can be
eliminated by deconvolution methods. Seismic signal
processing also requires inverse filtering for the
localisation of natural resources.

II. TDD METHOD

Time domain deconvolution method is based on simple
algebraic identities, which permit exact deconvolution
for first order kernels or filters. Deconvolution of higher
order kernels is done by the combination of first order
factors. In this respect, TDD method requires the
factorisation of a convolution kernel into its first order



terms. Ideally a deconvolution filter should satisfy
h(n)JeD he in(n)=0(n) where P is

convolution. The solution for the above equation is ill
conditioned since there are more equations than the
unknowns. TDD method tries to find a deconvolution
filter which satisfies,
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Additional terms on right hand side of equation (1) allow
us to find exact solutions for deconvolution operation. As
long as the sample splitting factor, I, is greater than the
input length, exact copies of the input signal can be
obtained. Note that finding a solution to a conditioned
equation like (1) is not an easy task. Instead we will use
an operation which is called as sample splitting for
finding a solution for (1). Let hy (n) be a D dimensional
first order convolution kernel. The deconvolution kernel,
he_inv,dm), can be found by a successive sample splitting
operation defined as below.
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Sample splitting is continued until k satisfies,
k> Logy(N D) -1 [5]
where Ny is the largest length of the input sequence.
Then the deconvolution filter is obtained as,

fi_ino(n) = ho(n) Pha(n) P...2 b (n) [6]
Here h¢ jny,dn), is the deconvolution kernel for the first
order filter h(n). In order to choose a copy of the input
sequence from the output of deconvolution, which has

several images of the scaled input signal, we use the
windowing operation,

D
x(n) = (y(n) < he_in,0(n)|Recty, 0) [7]
Above TDD method can be used for any type of

convolution kernel (including the ones which have zeros
on the unit circle) in one-dimensional case. If the first

where otherwise
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order convolution kernel satisfies the det(h)=0 condition,
then it is possible to obtain exact deconvolution in
multidimensions. It may still be possible to obtain exact
deconvolution even when det(h)20 depending on the size
of the input signal and the value of det(h).

III. PROPERTIES OF THE TDD METHOD

We will first show that deconvolution filter in TDD
method can be obtained by a pole-zero cancellation. In
this sense deconvolution is a pole-zero cancellation
followed by some spectral shaping. For one dimensional
case, convolution and deconvolution in z-domain can be
written as,

Y(z) = X(2) H(z) [8]
D(z') = Y(2) He_iny(2)

where D(Z') is a polynomial of Z'. Let X(z)=1. Then
deconvolution filter, He in(z) will be
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where M; and G; are the sets of minimum phase zeros
and M, and G, are the sets of maximum phase zeros. If
we choose di=cx (M= G3, My= Gy) and apply the pole-
zero cancellation, we have
He iny(2) = @A+ dye . 4dy 270D [19
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Above deconvolution filter is always stable and causal.

Noise sensitivity of the TDD method depends on several
properties. The numerical error noise sensitivity is the
noise sensitivity when there is no noise on both output
y(n) and convolution kernel h(n) sequences. Noise
sensitivity of the TDD method in this case depends on:
a) The location of the zeros on the unit circle.

b) The value of the split factor, 1.

¢) Which copy of the input sequence, x(n), will be
chosen.

d) How accurate the zeros of h(n) are found.

a) Location of the zerodf the zeros on the unit circle
get close to each other, noise sensitivity increases. The
zeros of the convolution kernel outside the unit circle
have little effect on the noise sensitivity.

b) Split factor, t Noise sensitivity increases with the split
factor, 1. In addition noise sensitivity shows a cyclic
behaviour. The period, P, of this cyclic behaviour is
approximately equal to,
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where O is the angle of the zero on unit circle and N; is
the smallest integer that makes P as an integer value.
¢) Copy of the input sequenddoise sensitivity depends
on which copy of the input sequence is chosen from the
deconvolution output. The copy of x(n) that corresponds
to the first d(n) coefficient has the best noise quality.
This copy of x(n) at the deconvolution output requires
the least number of arithmetical operations, where some
of them should exactly add up to zero. This is why the
first copy of x(n) has the smallest numerical noise.
d) Zero finding accuracyNoise sensitivity of the TDD
method depends on how accurately we find the zeros of
the convolution kernel. Pole-zero cancellation is affected
by this accuracy.

p

IV. APPLICATIONS OF THE TDD METHOD
Applications of deconvolution operator can be divided
into two main groups, namely direct and blind
deconvolution. Direct deconvolution is related to the
problem of finding the input signal when the system
output and convolution kernel are known. Blind
deconvolution is used when the convolution kernel is
unknown. This is an iterative procedure in contrast to
one step operation of direct deconvolution. In this paper,
we will give examples for both direct and blind
deconvolution.

Example 1:

In this example, we will show the performance of the
TDD method for noisy observations. The convolution
kernel is chosen with zeros at z=1.0, z; 7~0.27%j0.51,
z3=-1.72, and z; 7~0.9+j2.17. Figure 1.a shows the input
signal. Convolution output with a SNR of 34.6 dB after a
zero mean white noise is added is shown in Figure 1.b.
Deconvolution filter, he jn(n), is given in Figure 1.c. The
result of the deconvolution is presented in Figure 1.d.
SNR for the reconstructed input sequence is 24.72 dB on
the average for 30 trial runs.

Example 2:

In this example, we used a modified version of the NAS-
RIF structure for blind deconvolution. Figure 2 shows
the modified NAS-RIF structure. In this modified
structure, deconvolution filter length depends on the
input image size. But optimisation is done on the
convolution filter coefficients rather than the
deconvolution filter. Input is a 32 x 32 8 bit image of
heart and lungs obtained from electrical impedance
tomography. Blurring point spread function is assumed
to be a first order nonseparable filter. Figure 3.a. is the
original image. Figure 3.b is obtained after several

iterations by manual intervention to the filter coefficient
optimisation routine. Figure 3.c shows the result of the
modified NAS-RIF algorithm after 20 iterations. Note
that there are some structures, which are not clearly seen,
in the original image in both b and c.

V. CONCLUSION

In this paper, properties of the recently proposed
multidimensional deconvolution method have been
investigated. This new method gives exact solutions for
any convolution kernel in one dimensional case and
covers a set of possible solutions in multidimensions. It
turns out that this time-domain method is closely related
to pole-zero cancellation with an additional spectral
shaping. Noise sensitivity of the TDD method increases
when the zeros on the unit circle get closer. It also
depends on the accuracy of the factorisation of the
convolution kernel and the value of the split factor, . In
addition to these, the first copy of the input from the
several other copies at the deconvolution output is the
best in terms of noise sensitivity. We have given different
examples of the applications of the TDD method. TDD
method is robust to additive noise and it can be
successfully used in blind deconvolution.
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Figure 1. One dimensional deconvolution with additive noise.
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Figure 2. Modified NAS-RIF structure for blind deconvolution.

Figure 3. Blind deconvolution with modified NAS-RIF structure. a. Original image, b.image optimized
subjectively, c. image obtained with NAS-RIF algorithm after 20 iterations.



