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ABSTRACT

This paper addresses the blind deconvolution of multi-input–
multi-output (MIMO) FIR systems driven by white non-Gaussian
source signals. First, we present a weaker condition on source
signals than the so-called i.i.d. condition so that blind
deconvolution is possible. Then, under this condition, we
provide a necessary and sufficient condition for blind
deconvolution of MIMO FIR systems. Finally, based on this
result, we propose two maximization criteria for blind
deconvolution of MIMO FIR systems. These criteria are simple
enough to be implemented by adaptive algorithms.

1. INTRODUCTION

Consider a set of received signals that are linear (convolutive)
mixtures of a set of source signals. The objective of blind
deconvolution is to recover the source signals from the set of
received signals without the knowledge of the linear mixtures or
the LTI systems. The case when the mixture is instantaneous has
been well studied. For example, see [1] and the references
therein. Blind deconvolution has received increasing attention in
the past few years [2]–[7]. One way for achieving blind
deconvolution is first to blindly identify the channel system from
the channel outputs [8], and then to design an equalizer
accordingly. The other way of achieving blind deconvolution is
to directly design an equalizer from the equalizer outputs. For
example, see [2]–[7] and the references therein. Thisdirect
approachis preferable, because it bypasses the process of blind
system identification and the order estimation of the channel
system that is usually needed for blind system identification.
Moreover, the computation becomes simpler, because the
dimension of the channel output is usually larger than that of the
equalizer output.

Most of the approaches assume that the sequence of source
signals is temporallyi.i.d. For example see [2]–[5] and the
references therein. However, the condition ofi.i.d. for source
signals is too restrictive for some applications. For example, in
digital communications, the information bearing sequences are

coded and hence are unlikelyi.i.d. On the other hand, these
coded sequences are usually interleaved to encounter burst errors
and are usually considered to be uncorrelated. Therefore, it is
vitally important to weaken the temporaryi.i.d. condition to the
temporary white condition.

In this paper, we first present aweakercondition on the source
signals than thei.i.d. condition so that blind deconvolution is
possible. Then under this weaker condition we provide a
necessary and sufficient condition for blind deconvolution of
MIMO FIR systems. Finally, based on this result, we propose
two maximization criteria for blind deconvolution of MIMO FIR
systems. These criteria are simple enough to be implemented by
adaptive algorithms.

This paper uses the following notation. Matrices are denoted by
boldface uppercase letters. Column vectors are denoted by
boldface lowercase letters. All others are scalars. The
superscriptT denotes the transpose of a matrix. The superscript
∗ denotes the complex conjugate of a scalar or a matrix. The
i j,( )th component of a matrixA is denoted byaij . Let I

denote an identity of an appropriate size. Letcum , ,x xn1 �{ }

denote thenth-order (or joint) cumulant of random variables
x xn1, ,� , which is defined as a coefficient of the Taylor

expansion of the natural logarithm of the joint characteristic
function of x xn1, ,� [11].

2. PROBLEM FORMULATION

We consider an MIMO FIR system shown in Figure 1,
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Figure 1. A model for blind deconvolution.
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Note that no condition is imposed onH 0( ) nor H K −( )1 .

The equalizer outputz t( ) and the inputs t( ) are related by

z G s W n( ) ( ) ( ) ( ) ( )t z t z t= + , (3)

where G W Hz z z( ) = ( ) ( ): .

The objective of blind deconvolution or source separation is to
design an equalizerW z( ) that recovers the original source
signals only from the observations of the system outputsy( )

,
.t s

Definition 1: A scalar function g z( ) of a complex variable
z is said to bemonomialif it can be represented asg z czd( ) = .

An LTI system with n inputs and n outputs is said to be
transparent(or decoupled)if its transfer function matrixG z( )
has a single nonzero monomial entry ineach row and each
column.

Note that an LTI system is transparent if and only ifG z( ) has a
decomposition of the form

G DP( ) ( )z z= ΛΛΛΛ , (4)

where ΛΛΛΛ( )z is a diagonal matrix with diagonal entries
λ ii

lz zi( ) = (where l i is a non-negative integer),D a regular
constant diagonal matrix, andP a permutation matrix. Then,
the blind deconvolution problem is formulated as follows:
Design an equalizerW z( ) , so that the condition

W H DPz z z( ) =( ) ( )ΛΛΛΛ . (5)

is satisfied, i.e.,G z( ) is transparent.

A channel systemH z( ) is said to bedeconvolvableif there
exists an equalizerW z( ) so that the composite systemG z( ) is
transparent. A necessary and sufficient condition for the
existence of such equalizerW z( ) is given by Massey and Sain
[10].

Theorem 1 (Massey-Sain Theorem):Let H z( ) be an m n×
matrix transfer function of an FIR channel system. Then a
necessary and sufficient condition forH z( ) to be deconvolvable
is that thegreatest common divisorGCD( ) of all the minors of
order n in H z( ) is nonzero monomial, that is,

GCD { , , , }d z i C zi m n
l( ) = =1 2 � (6)

for some integerl ≥ 0 , where d zi ( )
,
s denote all the minors of

order n in H z( ) .

To specify the source signals, we introduce some preliminary
definitions and notions for stationary non-Gaussian vector-
valued random processes as shown in [11].

Definition 2: Let {s( )}t be a complex-valued stationary
random vector process with components{ ( )},s ti i n= 1, ,� .
Then the family ofsecond-order cumulant sequencesof {s( )}t

is defined by cs si j, ( ) :τ = cum { ( ), ( )}s t s ti j
∗ + τ for i j n, ,= 1 ,�

and t Z∈ . In particular, the sequence{ ( )}c sjsi , τ is also called
the cross-correlationof { ( )}s ti and { ( )}s tj for i j≠ and the
auto-correlationof { ( )}s ti for i j= , and cs si j, ( )0 (denoted by
σ si

2 ) is called thevariance of { s ti ( )}. The family of fourth-

order cumulant sequencesis defined by c t t ts s s si i i i1 2 3 4 1 2 3, , , ( , , ) :=
cum{ ( ), ( ), ( ), ( )}s t s t t s t t s t ti i i i1 2 3 41 2 3

∗ ∗+ + + for i i i i1 2 3 4, , , =
1, ,� n and t t t Z1 2 3, , ∈ . In particular, the sequence

{ ( , , )}, , ,c t t ts s s si j k l 1 2 3 is called thefourth-order auto- or cross-

correlation of { ( )}s ti , { ( )}s tj , { ( )}s tk , { ( )}s tl depending on
whether all the indicesi, j, k, l are the same or not. Furthermore,
cs s s si i i i, , , ( , , )0 0 0 is called thefourth-order cumulantor kurtosis

of s ti ( ) and denoted byκ si
.

For notational simplicity, we denote the second- and fourth-
order cumulants,c ts sii ,

( ) and c t t ts s s si i i i, , , ( , , ),1 2 3 by c tsi
( ) and

c t t tsi
( , , )1 2 3 , respectively, if it is clear from the context.

Definition 3: A process { ( )}s t is said to betemporally

uncorrelated if all the auto-correlationscsi ,
,si

τ( ) i n= 1, ,�

are zero except at the originτ = 0 and it is said to bespatially

uncorrelatedif all the cross-correlationsc i js si j, ( ),τ ≠ are zero.
It is said to besecond-order whiteif it is both temporally and
spatially uncorrelated. Furthermore, it istemporally fourth-

order uncorrelated if all the fourth-order auto-correlations
c t t t i ns s s si i i i, , , ( , , ), , ,1 2 3 1= � are zero except at the origin
t t t1 2 3 0= = = . It is spatially fourth-order uncorrelatedif
all the fourth-order cross-correlationsc t t ts s s si i i i1 2 3 4 1 2 3, , , ( , , ) (where

i i i i1 2 3 4, , and are not all the same.) are zero. It is said to be
fourth-order white, if it is temporally and spatially fourth-order
uncorrelated.

Henceforth, we assume throughout the paper that

1) The matrices H z( ) and W z( ) are transfer functions
representing FIR systems.

2) The vector sequence{ ( )}s t is a zero-mean random
process satisfies the cumulant summability conditions of
orders 2 and 4. In addition, assume that the kurtoses
κ si

i n, =1, ,� , of all the components ofs( )t are
nonzero, which implies that it is a non-Guassian process.

3) For the purpose of analysis, the noise is assumed to be
zero, i.e., n t( ) ≡ 0 , although the criteria presented in
Section 4 can be applied to noisy cases.

We also consider the following two conditions:

(A1) The sequence{ ( )}s t is second-order white, and spatially
fourth-order uncorrelated. In addition, assume that the
kurtosesκ si

i n, =1, ,� , of all the components ofs( )t
are nonzero.



(A2) The sequence{ ( )}s t is second-order and fourth-order
white.

3. NECESSARY AND SUFFICIENT
CONDITIONS

Consider a composite system described by (1)–(3) with (A1).
We present a necessary and sufficient condition for blind
deconvolution.

Theorem 2: Let H z( ) be deconvolvable, and let{ ( )}s t
satisfy (A1). Suppose an equalizerW z( ) is used to make a
composite systemG z( ) . Then the composite systemG z( ) is
transparent if and only if the output sequence{ ( )}z t is a second-
order white and spatially fourth-order uncorrelated random
process with nonzero variancesσ zi

i n2 0, 1 ,≠ = , � .

See [12] for the proof.

Remark 2.1: The condition on the signal source{ ( )}s t can
hardly be further weakened. It is known that the second-order
statistics alone is not sufficient for blind deconvolution. We
have to use high order statistics. In(A1), only the fourth-order
spatial statistics are added.

4. CRITERIA FOR MULTICHANNEL BLIND
DECONVOLUTION

In this section, based on Theorem 2, we present optimization
criteria for blind deconvolution of MIMO FIR systems. The
assumption made on the source sequence{ ( )}s t is specified by
(A1) or (A2) in the previous sections.

We shall present two criterion functions for multichannel blind
deconvolution below according to(A1) and (A2), respectively.
Under (A1), we consider the following maximization
criterion (A):

Maximize JA subject to the constraintscz zi j, τ( ) =
δ δ τi j−( ) ( ) for all τ ∈Z and all i j n, , ,= 1 � , where
JA is defined by

J c t t tA z
t t t Zi

n

i
: ( , , )

, ,

=
∈=

�� 1 2 3
2

1 1 2 3

(7)

Under (A2) we consider the following maximization
criterion (B):

Maximize JB subject to the constraintscz zi j, τ( ) =
δ δ τi j−( ) ( ) for all τ ∈Z and all i j n, , ,= 1 � , where
JB is defined by

JB z
i

n

i
:=

=
� κ 2

1

(8)

We note that the constraints of the criterion (A) are the same as
those of the criterion (B), and both of them require the equalizer
output process{ ( )}z t to be normalized-white in the second-

order sense. This is equivalent to the condition

E t k t kT{ }z z I+( ) ( ) = ( )∗ δ . (9)

In order to show the validity of the criteria (A) and (B), we
require the following lemma. To this end, we present first the
definition of paraunitary systems.

Definition 4: Let H z( ) be an n n× transfer function matrix
representing an FIR system. Then it is said to beparaunitary if
H ( )e j− ω is unitary, that is,H H I( ) ( )e ej j T− − ∗ =ω ω for any real
ω . Also, the system itself is called paraunitary for simplicity.

Lemma 1: Let x t( ) be a complex vector-valued stationary
random process described by

x H st z t( ) = ( ) ( ) , (10)

where H z( ) is an n n× transfer function matrix of a
paraunitary system and{ ( )}s t is a complex vector-valued
stationary random process with zero mean. Then, it holds true
that

K Kx s= , (11)

where,

K c t t t
i i i i

n

s s s s
t t t Z

i i i is: ( , , )
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See [12] for the proof.

It may be interesting to note from the above lemma that although
paraunitary is a condition based on second statistics, it imposes a
condition on higher-order statistics.

Using Theorem 2 and the above lemma, we can establish the
following theorem, which shows the validity of the maximization
criteria (A) and (B).

Theorem 3: Let H z( ) be deconvolvable, and let{ ( )}s t
satisfy (A1) (or (A2)). Suppose an equalizerW z( ) is used to
make a composite systemG z( ) . Then under(A1) (or (A2)) on
{ ( )}s t , the maximization criterion (A) (or the maximization
criterion (B)) makes the composite systemG z( ) transparent.

Remark 3.1:Although criterion JA is not found elsewhere,
the criterion JB has appeared in [3], but under a stronger
condition on source signals, i.e., thei.i.d. assumption is
presumed.

Remark 3.2:Numerical algorithms based on criterion (B)
under thei.i.d. assumption have been proposed in [13]. It can be
shown that these algorithms can also be applied to the case when
source signals satisfy(A2).

Remark 3.2:The criteria (A) and (B) may be regarded as
extensions of the Salvi-Weinstein (SW) criterion [14] for the



single channel case to the multichannel case. It is widely known
that the SW criterion has close connections with the constant
modulus (CM) criterion and the mean square error (MSE)
criterion. For a simple case, some results on their connections
are reported by Gu and Tong [15].

Proof of Theorem 3: Without loss of generality, we may
assume that the input process{ ( )}s t is normalized-white, and
because(A1) or (A2), { ( )}z t is normalized-white. Hence,G z( )
is paraunitary. Thus applying Lemma 1 toG z( ) , we have

K Kz s= , (12)

On the other hand,Kz and Ks can be decomposed as

K K Ka c
z z z= +( ) ( ) , (13)

K K Ka c
s s s= +( ) ( ) , (14)

where K a
z
( ) and K a

s
( ) are the sums of all the absolute squares of

all the fourth-orderauto-cumulant sequences of{ ( )}z t and
{ ( )}s t , respectively, andK c

z
( ) and K c

s
( ) are the sums of all the

fourth-order cross-cumulant sequences{ ( )}z t and { ( )}s t ,
respectively. Under(A1) or (A2), it holds true that K c

s
( ) = 0 ,

which implies from (12), (13), and (14),

K K Ka c a
z z s
( ) ( ) ( )+ = =( )constant

. (15)

Now, consider (A1). SinceK c
z
( ) is non-negative andK Ja

Az
( ) =

from their definitions, the maximizationJA subject to the
constraints in the criterion (A) impliesKz

c( ) = 0 , which means
that the output process{ ( )}z t is spatially fourth-order
uncorrelated. Based on Theorem 2, this concludes that the
composite systemG z( ) is transparent, because{ ( )}z t is second-
order white. Similarly, we can prove the case under (A2).

5. CONCLUSIONS

We considered the blind deconvolution of MIMO FIR systems
driven by white non-Gaussian source signals. First, we found a
weaker condition on source signals than the so-calledi.i.d.
condition so that blind deconvolution is possible. It was found
that the condition is that the source signals are second-order
white and spatially fourth-order uncorrelated. Then, under this
condition, we provided a necessary and sufficient condition for
blind deconvolution of MIMO FIR systems. It was shown that
blind deconvolution is achieved if and only if the composite
output signals are second-order white and spatially fourth-order
uncorrelated. Finally, based on this result, we proposed two
maximization criteria for blind deconvolution of multiuser-
multichannel systems.

These criteria use only the second- and fourth-order statistics of
the equalizer outputs. Therefore, we can directly use these
criteria to recover the source signals without first using a channel
identification process. In particular, the maximization criteria
(A) and (B) require no information of, and hence are robust to,

the order of the channel systems, but only a bound of the order.

Numerical algorithms based on the maximization criterion (A)
are being developed and will be reported in future work.
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