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ABSTRACT

In this paper, we present a computationally simple algorithm suit-
able for fast, high resolution estimation of time delays and doppler
shifts (which are necessary for target localization and tracking) be-
tween narrowband signals in an active sonar system. The algo-
rithm uses a modulated Lagrange interpolation filter and an LMS-
type algorithm. The problem of delay and doppler estimation is
reduced to a linear regression problem. Convergence and per-
formance analysis of the method is studied both analytically and
through simulation. It is demonstrated that the method provides
estimates close to the Cramer-Rao Lower Bound.

1. INTRODUCTION

An active sonar system basically transmits an acoustic signal into
the ocean and from the reflected echo attempts to extract infor-
mation about the target. Often, the parameters of interest are the
range (location) and velocity of the target, estimates of which may
be determined from the differential time delay (DTD) and differ-
ential frequency offset (DFO), also termed doppler shift, between
the transmitted and received signals [1]. In a conventional active
sonar system, block data segments are obtained and the narrow-
band pulse is detected in one of these segments, hence rendering
a coarse range estimate. Commonly, the DTD and DFO is then
estimated more accurately from a computationally expensive am-
biguity function calculation comprising of acquisition and tracking
modes [2]. To localize the target with a very high degree of pre-
cision, estimation of non-integral sample time delays is required
and hence interpolation by a sinc function is often used [2]. There
are two disadvantages with this approach, the computational cost
(which can impair ability to perform real-time target tracking) and
the ranging and doppler errors incurred by non-optimal interpola-
tion.

Here, we consider (comparatively) fast but high resolution es-
timators suitable for DTD and DFO estimation using narrowband
signals (and hence perform high resolution localization and real-
time target tracking at a low computational cost). We develop and
generalize estimators originally proposed for on-line time delay
estimation (TDE) only.

The least mean square time delay estimator (LMSTDE) algo-
rithm [3] is a well-known technique but can only render integer
delay estimates—closer estimates are obtained by subsequent in-
terpolation. Again, the “postprocessing” interpolation has no op-
timality properties. A technique which directlyupdates the delay
estimate such as the explicit time delay estimator (ETDE), using
the same sinc interpolator in an adaptive system identification con-
figuration, has been shown to give superior performance [4]. The

advantage of the ETDE method is that the time delay estimate is
adapted directly on a sample by sample basis. This removes the
phenomenon of “false peaks” using standard LMSTDE [5]. The
ETDE has the potential to exploita priori signal information by
incorporating a more suitable interpolator than the sinc. From now
on, we use the term ETDE to refer to the general explicit TDE al-
gorithm with arbitrary interpolator, and the sinc-ETDE (SETDE)
to refer to the ETDE with the specific sinc interpolator of [4]. Pre-
vious work has resulted in a computationally efficient and accurate
delay estimation algorithm for narrowband signals, the Lagrange-
ETDE (LETDE) method which uses a Lagrange interpolator to ap-
proximate the delay [6]. Significant estimation mean-squared error
reduction can be achieved by modulating the Lagrange interpola-
tor to the signal frequency!c [6]. Performance of DTD and DFO
estimation for different!c is very much of interest, as there ex-
ists an optimum transmission frequency related to the target range
[1]. Here, it is shown that the modulated LETDE can be applied
successfully to the joint DTD and DFO estimation problem.

In this paper, the LETDE algorithm is used to determine the
delay between a reference signal and a delayed, frequency offset
but otherwise identical signal in noise. The effect of the frequency
offset is to cause the delay between the two signals to be linearly-
time varying. The proposed method herein estimates off-line the
DTD and DFO via linear regression analysis on the delay estimates
time series obtained from the LETDE. Linear regression over a
data segment of typical length is computationally simpler than the
ambiguity function computation of [2]. The performance of the
proposed method is assessed through numerical examples.

2. PROBLEM FORMULATION

2.1. Signal model

Consider the two-signal model wherex(k) is the reference (trans-
mitted signal) andy(k) is a data segment containing the reflected
echo, delayed by the DTD� and doppler shifted by DFO�:

x(k) = s(k)ej!ck + �(k) (1)

y(k) = �s(k � �)ej(!c+�)(k��) + �(k): (2)

In the above model,s(k) is a narrowband signal of bandwidth
W << !c, where the center frequency!c is known;k is the time
index; the sampling period is assumed to be unity andf�(k); �(k)g
are complex white, zero-mean noises with unknown variancesf�2� ;
�2�g. The attenuation� is assumed to be unity throughout this pa-
per to simplify the analysis. The method presented herein is easily
extended to also estimate� if required without affecting the rela-
tive performances of the methods. Here, it is sufficient to estimate
the DTD� and DFO�.



2.2. Fractional delay approximation

The accuracy of delay estimation by adaptive techniques such as
the ETDE hinges on the approximation ofs(k �D), whereD is
a fractional sample delay:

s(k�D) �
NX

m=0

h(m;D)s(k�m) (3)

which depends naturally very heavily on the choice of interpola-
tion functionh(m;D) [7]. The ideal interpolation function, the
sinc function, is infinite in length and hence unrealizable [7]. In
lieu of this, the truncated sinc filter was proposed [4] but the La-
grange interpolation filter has since been shown to be superior for
narrowband signals [6] in terms of delay estimation mean squared
error.

The Lagrange interpolation filter (LIF) is defined as

h0(m;D) =
NY

i=0
i6=m

(D� i)=(m� i) (4)

and has some very useful properties for TDE. Firstly, The LIF is
equivalent to a filter maximally flat at zero frequency [7], where
maximally flat means that derivatives up toN th order at a point in
the frequency domain approximation error are forced to zero [7].
The LIF can be made maximally flat at a frequency!0 by apply-
ing a complex modulation [8]. Secondly, The LIF is particularly
useful as the derivative of the coefficients with respect toD can be
computed exactly [6]. This follows as Lagrange interpolation is a
polynomial inD, which is differentiable. Thirdly, the coefficients
are easily computed via (4) or a Farrow approximation structure
(an efficient implementation of interpolation filters) [7] or a high
resolution lookup table can be used.

2.3. The LETDE algorithm

The LETDE algorithm was proposed in [6] and is quickly sum-
marized here. The LETDE is an extension of the SETDE algo-
rithm [4]. Its system block diagram is depicted in figure 1. The
interpolator filter coefficientsh(m; D̂(k)) are constrained to be
the truncated sinc filter in the SETDE algorithm or the Lagrange
interpolator filter (4) for the LETDE algorithm. Both ETDE algo-
rithms use the (complex) LMS algorithm and the updated delay is
[6]

D̂(k+ 1) = D̂(k) + 2�Refe�(k)
NX

m=0

x(k �m)f(m;D̂(k))g

(5)

where

e(k) = y(k)�
NX

m=0

x(k �m)h(m; D̂(k)) (6)

andf(m; D̂(k)) = @h(m;D̂(k))

@D̂(k)
and� is the stepsize. Note that

we use the notation̂D(k) to mean the estimated delay between
x(k) andy(k) at timek and should not be confused with the DTD
� . For the LETDE algorithm, the LIF is modulated to the sig-
nal centre frequency,i.e. !0 = !c, and henceh(m; D̂(k)) =

ej!c(m�D̂(k))h0(m; D̂(k)), or a complex modulated version of

(4). This impliesf(m; D̂(k)) = ej!c(m�D̂(k)) [f0(m; D̂(k))�

j!ch
0(m; D̂(k))] where f0(m; D̂(k)) is the derivative of

h0(m; D̂(k)) obtainable from [6] or by forming theN th order Far-
row approximation (a polynomial approximation) [7] to
h0(m; D̂(k)) and differentiating this.

3. DTD AND DFO ESTIMATORS

In this section, DTD and DFO estimators are proposed, derived
from using the LETDE algorithm to estimate the delay between
x(k) andy(k). Through our narrowband assumption, it can be
shown that this delay is linearly time-varying; equivalently, the
delay can be expressed as

D(k) = A+Bk + �(k) (7)

for some constantsfA;Bg and zero-mean perturbation�(k) due to
noise. It is shown in the next section thatD̂(k) converges to such
a straight line, from whose estimated gradientB̂ and estimated
interceptÂ one may obtain DTD and DFO estimates.

3.1. Convergence of the LETDE

By taking the expectation of (5) and simplifying, it can be shown
that (using the narrowband approximations(k) = 1 for simplicity)

EfD̂(k + 1)g = EfD̂(k)g � 2�!c sin(!c(EfD̂(k)g � �)

+�(k � �))� 2��2�b(EfD̂(k)g) (8)

whereb(x) is the functionb(x) =
PN

m=0 h
0(m;x)f0(m;x). As-

suming that the LETDE tracks the delay such that!cD̂(k)+�k�
(!c + �)� is small, or that the delay estimate does not fall out of
lock [5], one can perform the following analysis:

EfD̂(k+ 1)g � �EfD̂(k)g+ 2�!c(!c + �)�

�2�!c�k � 2��2�b(EfD̂(k)g) (9)

= �� + �(EfD̂(k)g � �)

�2�!c�k � 2��2�b(EfD̂(k)g) (10)

where
� = 1� 2�!2c (11)

� = 1 + (1� �)
�

!c
(12)

This can be further simplified with straightforward algebra to

EfD̂(k+ 1)g = �(�+ (�� 1)
kX

i=1

�i) + �k+1(D(0)� �)

+(1� �)k
kX

i=0

�i � (1� �)
kX

i=1

i�i

�2��2�

kX

i=0

�k�ib(EfD̂(i)g) (13)

whereD(0) is an initial estimate. Substituting for� and evaluating
the summations, this simplifies to

EfD̂(k + 1)g = � [1 +
�

!c
(1� �k+1)] + �k+1(D(0)� �)

+
�

!c

�

1� �
(1� �k+1) +

�

!c
k

�2��2�

kX

i=0

�k�ib(EfD̂(i)g) (14)



Clearly, a necessary condition for stability is thatj�j < 1, which
in turn specifies the bounds on the stepsize parameter:0 < � <
1=!2c . If � is chosen in this range, then ask !1, one arrives at:

EfD̂(k+ 1)g = �(1 +
�

!c
) +

�

!c
(

�

1� �
) +

�

!c
k

�2��2�

kX

i=0

�k�ib(EfD̂(i)g): (15)

3.2. Choice of� or �

The selection of the parameter�—or equivalently,� (see (11)) is
critical to algorithm performance. A small value of� implies a
value of� � 1 which causes large bias, and could mean the algo-
rithm fails to track a fast moving delay. A large value of� would
solve these problems but estimates would be sensitive to noise.
Simulations have shown for high SNR, there is little difference
among the resulting mean square errors for different�.

3.3. Regression analysis

Noting that (15) is (ignoring the final term) a straight line such
as (7), whose parametersfA;Bg can be estimated by a standard
linear regression technique [9] between starting pointD̂(M) and
end pointD̂(K�1) (and hence over a data lengthK�M ). From
the line-fitting paramater estimatesfÂ; B̂g we have the proposed
DTD and DFO estimators

�̂ =
Â� cB̂

1 + B̂
(16)

�̂ = !cB̂ (17)

wherec = �=(1 � �).

4. ESTIMATION BIAS

It can be seen that (15) is not quite of the same form as (7). The
final term in (15) contains an unknown parameters�2� andb(D̂k).
If we denote the term byT (D̂(k); �), we have

T (D̂(k); �) =
�2�(�� 1)

!2c

kX

i=0

�k�ib(EfD̂(i)g) (18)

and the functionb(D̂(k)) for the LIF is depicted in figure 2 for
various filter lengthsL = N + 1 (note LIFs are usually chosen to
be of even lengths [7]) where it can be seen that the bias reduces as
L increases and is symmetrical about the pointD̂(k) = 0:5, where
it is zero. It should also be noted that in the situation of interest
wherex(k) is the reference signal and�(k) is quantization/round-
off noise,�2� will be typically small (� 10�4 for quantization to 5
bits, corresponding to SNR� 35 dB). Hence, with this assumption,
the contribution ofT (D̂(k); �) is negligible.

5. NUMERICAL RESULTS

Simulation tests have been conducted to compare the performance
of the LETDE and SETDE algorithms. Two variants of each method
are used—one method when the filter is modulated to!0 = !c
as in Section 2.3, and one where the filter is left unmodulated (or
!0 = 0). Hence we have four algorithms: modulated and unmodu-
lated LETDE, and the modulated and unmodulated SETDE. In our

experiments,� = 0:3, � = 0:00003, L = 4, SNR= 40 dB. Also,
� = 0 which implies� = 1=(2!2c ) ands(k) = 1 was assumed.
The regression analysis was performed on 2000 data points from
iterations 2981 to 4980. Results are the average of 50 runs. The
performance was measured by the mean squared error (MSE) of
the estimates, defined below:

MSE(�̂) =
1

50

50X

i=1

(�̂(i)� �)2 (19)

MSE(�̂) =
1

50

50X

i=1

(�̂(i)� �)2: (20)

In figure 3(a), we have the MSE for the time delay estimate�̂ as
!c changes. It can be seen that the modulated filters significantly
outperform the unmodulated filters. For!c > 0:3�, both unmodu-
lated filters perform relatively poorly. However when!c < 0:3�,
the unmodulated LETDE has comparable performance with the
modulated filters and appears much better than the unmodulated
SETDE; this is due to the superior interpolation qualities of the
LIF at low frequencies.

Figure 3(b) compares the MSE for the DFO estimate�̂ and
the corresponding CRLB. Again, the modulated algorithms yield
estimates close to the CRLB (and the unmodulated LETDE but just
for small!c) and appear superior to the unmodulated algorithms.

Finally, the signals(k) was chosen to becos(Wk) and hence
has a finite bandwidthW . Figure 4 shows just the DTD estimates
MSE from this scenario (with� = 0:5 and hence� = 1=4!2c ) and
the estimation quality of the modulated LETDE becomes appar-
ent as it clearly outperforms the other algorithms. This is due to
the significantly better interpolation properties of the LIF for fre-
quencies in the vicinity of the maximally flat frequency [7]. This
suggests for narrowband signals with finite bandwidth, the LETDE
will render range and doppler estimates of significantly less MSE
than the SETDE.

6. CONCLUSIONS

A new, computationally simple, method for computationally sim-
ple estimation of DTD and DFO has been presented. The perfor-
mance of the well-known ETDE algorithm incorporating the mod-
ulated Lagrange interpolation filter has been studied by deriving
its convergence dynamics and bias in addition to numerical exam-
ples. It is found through simulation that the new algorithm is able
to render DTD and DFO estimation MSE comparable to the CRLB
for all !c. In addition, similar performance is demonstrated using
a signal of bandwidthW < 0:1�.
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Figure 1: The ETDE configuration.
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Figure 2: Bias termb(D̂(k)) as a function of LIF lengthL.
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Figure 3: Estimation MSE for (a) DTD̂� and (b) DFO�̂ for
modulated Lagrange (-o-), modulated sinc (- -x- -), unmodulated
Lagrange (-+-) and unmodulated sinc (- -*- -) ETDE algorithms;
CRLBs are shown (� � � ).
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Figure 4: Estimation MSE for DTD̂� asW changes for modulated
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