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ABSTRACT
Long intermediate AR models are used in Durbin's algorithms for
ARMA estimation. The order of that long AR model is infinite in
the asymptotical theory, but very high AR orders are known to give
inaccurate ARMA models in practice. A theoretical derivation is
given for two different finite AR orders, as a function of the sample
size. The first is the AR order optimal for prediction with a purely
autoregressive model. The second theoretical AR order is higher
and applies if the previously estimated AR parameters are used for
estimating the MA parameters in Durbin’s second, iterative, ARMA
method. A Sliding Window (SW) algorithm is presented that selects
good long AR orders for data of unknown processes. With a proper
choice of the AR order, the accuracy of Durbin’s second method
approaches the Cramér-Rao bound for the integrated spectrum and
the quality remains excellent if less observations are available.

1. INTRODUCTION

Spectral estimation is an important topic in signal processing [1].
Parametric or time series techniques are serious competitors for
the non-parametric methods, that use tapered and windowed
Fourier transforms [2]. Several solutions have been given for the
estimation of AutoRegressive (AR) models, but much less
attention has been given to Moving Average (MA) models [2].
Durbin [3] has used long AR models in MA estimation and this
method can produce accurate estimates if the order of that AR
model is chosen well [4]. The combined ARMA models have
different types of solutions [5]. Extended Yule-Walker methods
are computationally attractive, but the accuracy may be poor [2].
Maximum likelihood estimation of ARMA parameters from given
data is a non-linear problem, which can give rise to difficulties in
practice. The results for large samples are usually satisfactory.
However, the asymptotical likelihood theory can become inaccurate
in small samples. The estimated model may lie outside the
stationarity and/or invertibility region and convergence may depend
on the initial conditions [6]. Especially for small numbers of
observations, action must be taken to improve convergence and to
ensure stationarity and invertibility. The same problems occur if
poles and zeros of the ARMA process are close to each other.

It remains attractive to use ARMA models because they can be
the most parsimonious description of the data. Each estimated
parameter gives an increase of 1/N in the mean squared error of
prediction. Hence, the adequate representation with the fewest
parameters is the best. Many linearised ARMA methods use the
parameters of the first method of Durbin [7] as initial estimates. A
long AR model is used then to reconstruct the innovations or
residuals and to use them as regressors in an ordinary least squares
procedure. More stages can be added to get a better efficiency by
applying the principles of generalized least squares [5,8].

In looking for a safe, robust and practical solution for the
ARMA estimation problem, Durbin's second iterative method [7] is
still another choice, which is computationally simple. This method

uses the estimated parameters of a long autoregressive model as the
input for a linear MA estimation procedure and computes separately
consecutive updates for the MA and for the AR parts. Models
estimated with Durbin’s second method are always stable and
invertible if proper AR and MA algorithms are chosen. This is an
important advantage, especially for finite and small samples and for
small distances between poles and zeros. Nevertheless, this old and
simple ARMA method has not been popular, probably because its
accuracy is suspected to be comparable to extended Yule-Walker
methods. However, the practical achievable accuracy of Durbin’s
method is unknown so far, because no theory exists for the optimal
choice of long AR orders in finite samples. Durbin’s methods are
based on the asymptotical equivalence of AR(∞) and ARMA(p,q)
or MA(q) processes. Simulations with MA processes, however,
have shown that the best AR order is finite and depends on the true
process parameters and on the number of observations that is
available [4]. Hence, it may be expected that also the accuracy of
Durbin’s ARMA method can be improved by using a better order
for the long intermediate AR model that is used.

In this paper, the theory for best orders in linear regression [9]
will be applied to the best AR orders for ARMA processes.
Different applications of AR models are: using an AR model for
prediction or using the parameters of a long AR model to estimate
the MA part of the model. The requirements for the different
optimal AR orders will be described theoretically for known ARMA
processes. The theory about different orders will be verified in
simulations. The optimal accuracy of ARMA models obtained with
Durbin’s second method will be established, for the best long AR
order. The theory for known ARMA processes is used to develop a
Sliding Window algorithm to select good intermediate AR orders
for observations of unknown processes.

2.  DIFFERENT OPTIMAL AR MODEL ORDERS

The subject of order selection is known as subset selection or as the
selection of variables in linear regression. Akaike has introduced
AIC for AR model order selection and he described the close
connection of AIC with order selection criteria in ordinary
regression theory [10]. The size of the best estimated subset
depends on the intended use of that subset model [9], which among
other things can be:
• prediction, a good fit of the model response to new data
• a small mean squared error of the estimated parameters.
The optimal number of regressors in the best estimated model is
different for both purposes. That number can be related
theoretically to the true values of parameters in known processes,
but also to estimated parameter values in practice. However, a
theoretical development of the optimal orders is easier for known
true processes. Only bias by omission of parameters plays a role
then and the variance due to estimation is absent. The analysis
depends on the influence of the omission of true values of the
parameters on the theoretical residual sum of squares [9], that will



be called RSSth in the sequel. The variance σ2 of the additive noise
is used for scaling. The first application, prediction, forms the basis
of almost all existing order selection criteria. Regressors have to be
included in the best subset model [9] if addition of each arbitrary
group of r regressors causes at least a reduction rσ2 in the RSSth,
based on the true process parameters. However, if the primary
concern is accurate estimates of the parameters, the required
reduction of RSSth for any group of r regressors is only σ2 [9],
independent of r. This means that also smaller parameter values will
be included in the best subset for parameter accuracy, provided they
have as a group the same influence on the RSSth as each single
regressor must have in the best subset for prediction. The difference
between true and estimated parameters is that each estimated
parameter gives an additional average variance reduction − σ2 to
RSSth (so − rσ2 for a group of r regressors).

Some notation is required to apply those results to time series
models. An ARMA(p,q) process can be written as

A z x B zn n( ) ( )= ε  (1)

with A(z)=1+a1z
-1+…+ apz

-p, B(z)=1+b1z
-1+…+bqz

-q and z-1xn=x n-1.
Suppose that εn represents a series of independent, identically
distributed stochastic variables, a white noise process that generates
the data; σx

2 is the variance of the process and σε
2 is the variance of

the innovations εn. The theory of regression analysis will be applied
to long AR models of a true ARMA process (1), defined as:

C z n n( )x = ε  (2)

with parameters given by C(z)=A(z)/B(z) and with the same
innovation variance σε

2 as (1). The true AR model C(z) has order ∞.
A finite number of parameters can be determined with any desired
accuracy by computing the covariance function of the ARMA
process [1,4,11] for some finite order and transforming those
covariances to AR parameters or reflection coefficients ki with the
Levinson-Durbin algorithm [2]. The theoretical RSSth of all AR
models from order AR(1) to AR(∞) for the given ARMA process
(1) can be determined for a sample size of N observations as

RSS m N kth x i
i

m

( ) (1 )= −
=

∏σ 2 2

1

(3)

with RSSth(0)= σx
2 and

RSS N k Nth x i
i

( ) (1 ) .∞ = − =
=

∞

∏σ σ ε
2 2

1

2 (4)

The true ki describe the bias contribution that is the inaccuracy of
all finite order AR models (3) in comparison with (4); estimation
variance of parameters plays no role here. The asymptotical
expression for the residual sum of squares becomes exactly Nσε

2 for
AR(∞). The best AR order for prediction is found, for given N, as
the order K with the property that for arbitrary values of r > 0 :

RSS K r RSS K r
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So the reduction for r orders is greater than rσε
2 below K and

smaller than rσε
2 above K. This order K can be found by applying

an order selection criterion to the sequence of theoretical residuals.
In estimation, the variance of each parameter will approximately
give an additional expected decrease of RSS equal to σε

2. This leads
to the factor 2 in selection criteria, with equal weights assigned to
bias and to variance contributions [12]. The best AR order for
prediction, for a known ARMA process and a given N, is found

approximately as the order K with minimum of the generalized
information criterion GIC:

( )GIC K RSS K N K Nth( , ) ln ( ) / / ,α α= + (6)

with penalty α=1, because only bias is present in RSSth(K).
The AR order with the best parameter accuracy is found as the

order for which the theoretical RSSth(M), due to bias of incomplete
models, is only σ2 greater than for AR(∞), so the smallest M with

RSS M N k Nth x i
i

M

( ) ( ) (= − < +
=
∏σ σ ε

2 2

1

21 1) (7)

for N observations, or the order with theoretical residual variance
less than (1+1/N)σε

2, which is the same. The best order obviously
increases with N, the number of observations. This theory has
successfully been applied to MA processes, where a similar order
has been derived and simulations have corroborated the theoretical
derivation [4]. The order M is important in Durbin’s second ARMA
method because the parameters of the long AR model are used to
estimate the MA parameters.

3. SIMULATIONS WITH FIXED AR ORDERS

Simulations with several AR, MA and ARMA processes have
shown that the calculated AR order K, as defined above, is the best
order for estimated AR models if they are used for prediction.
Durbin’s second method consists of a number of simple compu-
tations to find an ARMA(p’,q’) model, with arbitrary p’ and q’. For
N given observations xn, the model can be written as:

� ( ) � ( )� .A z x B zn n= ε  (8)

Preparation of Durbin’s second method for a fixed AR order i:
• estimate AR(i) model from data xn with the Burg method [2]

• reconstruct residuals ��ε n with (2), using AR(i) model for C(z)

• obtain an initial estimate for the p’ AR parameters in Â(0)(z)
with Durbin’s first ARMA method [7], using p’ previous values

of xn and q’ previous ��ε n  as regressors

• use in this experiment the i parameters of the estimated AR
model to approximate the long C(z) of (2), denoted Ci(z).

Compute Â(j)(z) and � ( )( )B zj , using Â(j-1)(z):  j-1 → j    iteratively

• make the long division D(j)(z)=Ci(z)/Â(j-1)(z)
• compute � ( )( )B zj , from D(j)(z) with Durbin’s MA method [3]

• filter xn with updated MA model: � ( )( )B z w xj
n n=

• estimate Â(j)(z) with AR algorithm of Burg, using wn as data
• if desired, iterate by computing D(j+1) and so on.

The accuracy of estimated ARMA models is expressed in the
model error ME [11], which is a scaled version of the prediction
error PE. PE is defined as the variance of predictions when an
estimated model is applied to new data and

ME N PE= −( / .σε
2 1) (9)

For use in simulations, where the true process parameters are
known, an efficient expression in the time domain has been
derived for ME [11]. ME can also be used for AR or MA models,
by taking zeros for the absent MA or AR parameters. For models
of the true structure and with orders p’≥p and q’≥q, the
asymptotically achievable minimum of ME equals the number of
estimated parameters p’+q’, independent of the number of
observations [13]. By multiplying with N in (9), ME has been



made particularly suited to describe the model quality for
different sample sizes.

Fig.1 shows the ME for three different models estimated from
the same ARMA(3,2) process:
x x x xn n n n n n n− + − = + −− − − − −1 2 3 1 20 88 0 5 0 45 0 5. . . .ε ε ε     (10)

with normally distributed independent innovations εn. The average
results for AR(i) models and for ARMA(3,2) models estimated
from that AR(i) model are presented. The theoretical optimal orders
of (5) or (6) for K and (7) for M for prediction and for parameter
accuracy are 10 and 31, respectively, for this example and N=100.

The average ME of the AR(10) model is 20.0 and the AR(31)
model gives 46.6 if used for prediction. The order 10 turns out to be
the best for prediction with an AR model in Fig.1, equal to the
theoretical order K. Durbin’s first method, applying least squares to
delayed observations and reconstructed innovations, shows an
irregular average behavior. This is caused by the runs with non-
invertible solutions for the MA part. This has to be repaired with
constraints on the solution or with mirroring of zeros with respect to
the unit circle. Whenever such a reparation is required, the ME
values of Durbin’s first method become much greater. The best
value for ME, 19.9, is found for AR order 12. The problems with
non-invertible solutions increase with the AR order i in Fig.1.

Durbin’s second method uses the AR parameters of Durbin’s
first method as initial conditions; no iterations haven been used for
Fig.1. The MA part is computed from the parameters of the long
AR(i) model. AR order 31, equal to M of (7), gives the minimum
ME, 6.0, in Fig.1. Taking lower or higher orders than 31 gives a
higher ME, e.g. 10.7 for long AR order 10 and 6.8 for AR(50). It
turns out, also in many other examples, that taking lower long AR
orders than M can be much worse for the resulting quality of the
estimated ARMA model than taking too high orders for the long
AR model. The influence of iterations is very moderate. In this
example, ME was smallest without iterations.

As far as advises for long AR models orders have been given in
the literature, it was the best order for prediction or selected with
AIC [10], which is similar. By using that order as the long AR
order, the ME of the resulting ARMA model is in most examples
much greater than the attainable minimum. By taking the higher
theoretical order, the ARMA model with the smallest ME is found.

Fig.1 and many similar simulation results are a verification that
the linear regression theory for model orders can be applied to the
infinite order AR processes by using (3) for the description of the
residual sum of squares as a function of the AR model order. This
has been verified for different sample sizes and ARMA(p,q)
processes with different p and q. The orders K and M found in
simulations agreed always with the theory developed in (5) or (6)
and in (7). It is clear that the accuracy of the best ARMA model,
expressed in ME (9), is much better than that of the best AR model
in this example. The ME value for the best ARMA(3,2) model is
6.0. This is quite close to the value 5 that is the maximum
achievable accuracy according to the asymptotical theory [13].

Applying backforecasting [14] in filtering the data to wn before
the AR estimation in Durbin’s second ARMA method generally
gives lower ME values in examples. So this backforecasting of data
before the observation interval is beneficial, as it is in computing
the residual variance for an estimated model and it has been used
for all results presented. Also in reconstruction of the input signal
with a finite approximation of (2) for Durbin’s first method, the

reconstruction of ��ε n is better with backforecasting.

4.  SLIDING WINDOW ALGORITHM

So far, it has been demonstrated that the two best AR orders are K
and M for a known ARMA process. This showed that the order M
is always greater than (or possibly equal to) K. In practice, the order
K, for prediction with the AR model, can be selected with a great
variety of order selection criteria. The penalty α in (6) influences
the balance between overfit and underfit: taking too high or too low
model orders. The smallest value for α, however, without too much
statistical probability of overfit, is equal to 2, like in AIC [11].
Hence, that value 2 is used to select a value for K, and not for M. If
M would have to be selected directly from data, it would require a
penalty α that is almost one. Unfortunately, no order selection
criterion can select the desired order M from observations of a
process, because the variance of each estimated parameter is equal
to the small total bias contribution that has to be detected in (7). A
useful order for long AR models can be found in practice with a
sliding window technique. This has been applied successfully to
long AR models for MA estimation [4]. Details of some possible
algorithms are given here. and success depends heavily on details of
the implementation, so a precise description is presented.

Sliding Window ARMA(p’,q’) algorithm:    SW
• AR(i) models are estimated for orders 1 until N/2. The order K’

is selected with CIC [15] or FSIC [16], order selection criteria
that perform well if the highest candidate for selection is greater
than N/10. Use of GIC(p,α) of (6) for selection would often
erroneously result in selection of an AR order close to N/2,
therefore finite sample criteria are preferred.

• Compute initial conditions IC for the p’ AR parameters of
Durbin’s second method with his first ARMA method [7]. O1
is in the tables the intermediate AR order used in Durbin 1.

• If IC fail in practice, because of ill-conditioning of the matrix of
regressors or if the AR part of the model is not stationary, the
estimated ARMA(p’-1,q’-1) model can be used, denoted IC1

• an improvement has been tested by multiplying IC1 by the
ARMA(1,1) model that is found with Durbin’s first method
from the residuals of the ARMA(p’-1,q’-1), denoted IC2

• The AR order for Durbin’s second method is O2, for which a
variety of possibilities is tested: SWα is the order αK’+p’+q’
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   Fig.1  The average Model Error ME of the AR(i) model and two
ARMA(3,2) models estimated with Durbin’s methods, as a
function of the AR model order; 2500 simulation runs,
N=100, true ARMA(3,2) process given in (10).



Table 1. The average Model Error and the theoretical optimal AR
model orders in simulations for different implementations of
Durbin’s second ARMA method, as a function of N. O1 and O2 are
AR orders used in Durbin’s first and second method, respectively.

O1,O2 N=20 50 100 200 N=500 1000 2000 N=5000

K,M 8.39 5.97 5.46 5.49 5.05 5.28 5.10 5.00
M,M 8.91 6.16 5.53 5.37 4.98 5.15 5.07 4.96
K’,SW3 8.28 6.14 5.95 6.17 5.59 5.64 5.22 5.04
SW2,SW2 8.28 6.47 6.84 7.13 6.78 6.75 6.08 5.22
SW3,SW3 8.28 5.95 5.82 5.87 5.29 5.35 5.08 4.96
SW3iterated 8.88 7.34 7.50 7.49 6.52 6.79 6.00 5.39
SW4,SW4 8.28 6.07 5.62 5.47 4.86 5.11 4.97 4.99
IC1,SW3 7.18 5.79 6.77 8.38 13.1 22.2 40.0 94.8
IC2,SW3 7.91 5.69 6.12 6.75 7.74 9.83 11.6 14.5
IC2iterated 9.50 7.34 7.57 7.84 7.46 8.28 8.04 7.93

order K 5 7 10 14 21 28 36 48
order M 10 23 31 41 54 64 74 88

• SWα is α times the selected AR order for prediction plus the
number of parameters to be estimated. If αK’+p’+q’>N/2, it is
replaced by N/2. This choice for the long AR model gives
always the possibility to compute the p’+q’ ARMA parameters
and it is always greater than the selected order for prediction
K’. This AR order depends on p’+q’ of the desired ARMA
model. Therefore, the algorithm is called “Sliding Window”.

• Backforecasting of the signal before the observation interval is
used in filtering wn to remove the MA part from xn.

• The influence of iterations has been studied for all variants. It is
only reported after 10 iterations for SW3,SW3 and for
IC2,SW3 in the tables.

The ME for the optimal theoretical orders K,M or M,M for O1
and O2 have been given in the Tables as a reference to evaluate the
effect of selecting intermediate AR orders on the ME of the final
ARMA model; this is rather small for SW3. Taking different orders,
K’ and SWα was always worse than taking SWα for both orders, as
shown in Table 1 for K’,SW3 in comparison with SW3,SW3.

IC2 is an improvement for IC1, but is still worse than the SWα
variants. If the initial conditions are given by IC2 and if N is large,
iterations are often an improvement in simulations. SW3 with
iterations is only better than without iterations in the first columns of
Table 2, so iterations are only advisable if IC2 is used for initial
conditions; the best number of iterations turns out to depend on N.

Remark that the minimum achievable ME for this example
equals 5 in the Cramér-Rao bound of the asymptotical theory. So
the Sliding Window algorithms SW3 and SW4 give a very good
quality for the estimated ARMA(3,2) models, close to the accuracy
that is obtained for the theoretical best intermediate AR order M.

Table 2. The average Model Error for different implementations of
Durbin’s second ARMA method, N=200, ARMA process with the
parameters of (10), except b1 , as a function of the value for b1.

b1 in (10) -.45 -.30 -.15 0 .15 .30 .45

M,M 10.80 5.78 4.44 4.58 4.42 4.13 5.37
SW2,SW2 10.98 5.68 4.16 4.82 4.55 4.37 7.13
SW3,SW3 10.36 5.81 4.13 4.89 4.79 4.78 5.87
SW3iterated 8.67 5.74 4.37 5.49 5.21 5.61 7.49
SW4,SW4 10.57 5.94 4.22 4.81 4.69 4.90 5.47
IC2,SW3 14.97 7.41 4.02 4.65 5.11 5.99 6.75
IC2iterated 8.88 6.49 4.54 5.52 5.43 6.01 7.84

5. CONCLUDING REMARKS

Theoretical values for two different long AR orders have been
derived, that depend on the true ARMA process and on the sample
size. The first one is for prediction, the second for parameter
accuracy. No selection criterion is available for the second one, but
a sliding window algorithm defines a useful compromise for the
practice of ARMA estimation with Durbin’s second method.

Durbin’s second method for estimation of ARMA models is
presented with the theoretically optimal AR orders and with
practical choices. Durbin’s method attained a very good accuracy
for ARMA models, close to the lower bound for all sample sizes. It
combines computational simplicity and reliability with the large
sample accuracy of non-linear maximum likelihood solutions.
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