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ABSTRACT uses the estimated parameters of a long autoregressive model as the

Long intermediate AR models are used in Durbin's algorithms fOIjnput for a linear MA estimation procedure and computes separately
ARMA estimation. The order of that long AR model is infinite in consecutive updates for the MA and for the AR parts. Models

the asymptotical theory, but very high AR orders are known to giveestimated with Durbin's second method are always stable and

inaccurate ARMA models in practice. A theoretical derivation is !nvemble if proper AR and MA algorithms are chosen. This is an

given for two different finite AR orders, as a function of the sample/MPortant advantage, especially for finite and small samples and for
size. The first is the AR order optimal foredictionwith a purely small distances between poles and zeros. Nevertheless, this old and
autoregressive model. The second theoretical AR order is highe?lmple AR.MA method has not been popular, probably because its
and applies if the previously estimated ARametersare used for accuracy is suspected to be comparable to extended Yule-Walker

estimating the MA parameters in Durbin’s second, iterative, ARMAmethOds‘.' However, the practical achievable accuracy of Durb?n’s
method. A Sliding Window (SW) algorithm is presented that selects'ﬁ;]ethc’d |fs|unknown sg far,.beff:e.tuse no tlheory e>§§t§ for tr;]e (;)ptlmal
good long AR orders for data of unknown processes. With a propefn©ice of long AR orders in finite samples. Durbin’s methods are
choice of the AR order, the accuracy of Durbin'sosecmethod ~ Pased on the asymptotical equivalence of 4Rgnd ARMA(p,q)

approaches the Cramér-Rao bound for the integrated spectrum aRfl MA(Q) processes. Simulations with MA processes, however,
the quality remains excellent if less observations are available, ~ have shown that the best AR order is finite and depends on the true

process parameters and on the number of observations that is
1. INTRODUCTION availz_ible [4]. Hence, it may be (_expected that al_so the accuracy of

Durbin’'s ARMA method can be improved by using a better order
Spectral estimation is an important topic in signal processing [1]for the long intermediate AR model that is used.
Parametric or time series techniques are serious competitors for |n this paper, the theory for best orders in linear regression [9]
the non-parametric methods, that use tapered and windowegill be applied to the best AR orders for ARMA processes.
Fourier transforms [2]. Several solutions have been given for th@ifferent applications of AR models are: using an AR model for
estimation of AutoRegressive (AR) models, but much lessprediction or using the parameters of a long AR model to estimate
attention has been given to Moving Average (MA) models [2].the MA part of the model. The requirements for the different
Durbin [3] has used long AR models in MA estimation and this optimal AR orders will be described theoretically koownARMA
method can producaccurate estimates if the order of that AR processes. The theory about different orders will be verified in
model is chosen well [4]. The combined ARMA models have simulations. The optimal accuracy of ARMA models obtained with
different types of solutions [5]. Extended Yule-Walker methods Durhin’s second method will be established, for the best long AR
are computationally attractive, but the accuracy mapdee [2].  order. The theory for known ARMA processes is used to develop a
Maximum likelihood estimation of ARMA parameters from given Sliding Window algorithm to select good intermediate AR orders
data is a non-linear problem, which can give rise to difficulties infor observations afinknownprocesses.

practice. The results for large samples are usually satisfactory.
However, the asymptotical likelihood theory can becoraedarate 2. DIFFERENT OPTIMAL AR MODEL ORDERS

in gmalll samples: ThPT .?St'maFed model may lie outside th he subject of order selection is known as subset selection or as the
stationarity and/or invertibility region and convergence may dependgjection of variables in linear regression. Akaike has introduced

on the [nitial copditions [6]. Especia[ly for small numbers of AIC for AR model order selection and he described the close
observations, action must be taken to improve convergence and Qnnection of AIC with order selection criteria in ordinary

ensure stationarity and invertibility. The same problems occur ifregression theory [10]. The size of the best estimated subset
poles and zeros of the ARMA process are close to each other.

) . depends on the intended use of that subset model [9], which among
It remains attractive to use ARMA models because they can bSther things can be:
the most parsimonious description of the data. Each estimated prediction agoc')d fit of the model response to new data

parameter gives an increase of 1/N in the mean squared error of .
< asmall mean squared error of the estimated parameters.

prediction. Hence, the adequate representation with the feweﬁthe optimal number of regressors in the timatedmodel is
parameters is the best. Many linearised ARMA methods use thgiﬁerent for both purposes. That number can be related

parameters of thiirst method of Durbin [7] as initial estimates. A . -
theoretically to the true values of parameters in known processes,

; . . but also to estimated parameter values in practice. However, a
residuals and to use them as regressors in an ordinary least SAUaEESoretical development of the optimal orders is easier for known
procedure. More stages can be added to get a better efficiency ttu

: L . Nie processes. Only bias by omission of parameters plays a role
applying th? principles of generalized least squares [5’8.]' then and the variance due to estimation is absent. The analysis
In looking for a safe, robust and practical solution for the

ARMA estimation problem, Durbinsecondterative method [7] is depends on theh mflhuencg O]; thg domllssmn ?f true values hOf th.?l
still another choice, which is computationally simple. This methodparameters on the theoretical residual sum of squares [9], that wi



be called RS§in the sequel. The varianc® of the additive noise ~ approximately as the order K with minimum of the generalized
is used for scaling. The first application, prediction, forms the basignformation criterion GIC:
of almost all existing order selection criteria. Regressors have to be GICK ,a)=In (RSSth (K)/N ) +0K /N, (6)

included in the best subset model [9] if addition of each arbitrary . L .
[9] ryWlth penaltya=1, because only bias is present in RB3

The AR order with the best parameter accuracy is found as the
er for which the theoretical Rg#), due to bias of incomplete
models, is only? greater than for ARY), so the smallest M with

group of r regressors causes at least a reduatfom the RS,

based on the true process parameters. However, if the primag d
concern is accurate estimates of the parameters, the requirtﬁ
reduction of RS for any group of r regressors is ordy [9], M
independent of r. This means that also smaller parameter values will RS M) = No2 1-k2)<(N+ 1)02 7
be included in the best subset for parameter accuracy, provided they Sn (M) X Dl( ) <( o %

have as a group the same influence on theyR&Seach single o N ghservations, or the order with theoretical residual variance

regressor must have in the best subset for prediction. The differen¢g.¢ 1han (1+1/N)2, which is the same. The best order obviously
betweentrue and estimatedparameters is that each estimated increases with N Ythe number of obée rvations. This theory has

parameter gives an additional average variance reduetiwhto successfully been applied to MA processes, where a similar order

RSS; (so- ro*for a group of r regressors). _ _has been derived and simulations have corroborated the theoretical
Some notation is required to apply those results to time seriegerivation [4]. The order M is important in Durbin’s second ARMA
models. An ARMA(p,q) process can be written as method because ttparametersof the long AR model are used to
A(2)x, = B(2)e, (1) estimate the MA parameters.

with AZ)=1+az™+...+ a,z", B(2)=1+hz"+...+bz % and ZX=X 1.

Suppose that, represents a series of independent, identically 3. SIMULATIONS WITH FIXED AR ORDERS

distributed stochastic variables, a white noise process that generatg#nulations with several AR, MA and ARMA processes have

the datap,? is the variance of the process antlis the variance of  shown that the calculated AR order K, as defined above, is the best

the innovations,. The theory of regression analysis will be applied order for estimated AR models if they are used for prediction.

to long AR models of atue ARMA process (1), defined as: Durbin’s second method consists of a humber of simple compu-
C(2)x, =€, 2) tations to find an ARMA(p’,q’) model, with arbitrary p’ and q'. For

with parameters given by C(z)=A(z)/B(z) and with the sameNgiVen observations,xthe model can be written as:

innovation variance,” as (1). The true AR model C(z) has order A@2)x, =B(2)E, . (8)
A finite number of parameters can be determined with any desire . - ) .
accuracy by computing the covariance function of the ARMAE)rep"’“,atlon (XF?wb'n; T?con%methgg fﬁr %f'xed ARho(rjd(—erl.
process [1,4,11] for some finite order and transforming those estimate AR(i) mo ? rom datg with the Burg method [2]

covariances to AR parameters or reflection coefficientgith the + reconstruct residualg,, with (2), using AR(i) model for C(z)

Levinson-Durbin algorithm [2]. The theoretical R$8f all AR + obtain an initial estimate for the p’ AR parameters i@

models from order AR(1) to AR for the given ARMA process with Durbin’s first ARMA method [7], using p’ previous values

(1) can be determined for a sample size of N observations as , .2
of x, and ¢’ previoust , as regressors

m
RSS,(m) = l\bf |'| 1- kiz) (3) » use in this experiment the i parameters of the estimated AR
i=1 model to approximate the long C(z) of (2), denotéd)C
with RS$(0)=0,” and Compute A(z) andB¥ (z), using A(z): j-1 - | iteratively
00 .. A A "(j-l)
- 2 k2= 2 4 ¢ make the ang division _@(z)—C(z)/A )
RS () = Noy, Dl(l k)= Nog @ computeg (), from D?(z) with Durbin’s MA method [3]

The true kdescribe the bias contribution that is the inaccuracy of* filter x,with updated MA modelg® z)w,, = x,,
all finite order AR models (3) in comparison with (4); estimation « estimate ﬁ)(z) with AR algorithm of Burg, using yas data

variance of parameters plays no role here. The asymptotical if desired, iterate by computing'® and so on.
expression for the residual sum of squares becomes exagtljoN

AR(e). The best AR order for prediction is found, for given N, as  The accuracy of estimated ARMA models is expressed in the

the order K with the property that for arbitrary values of r >0 : model error ME [11], which is a scaled version of the prediction
RSS;, (K+r)>RSS;, (K) - ro§ error PE. PE is defined as the variance of predictions when an
(5)  estimated model is applied to new data and

2
RSS, (K=r1)>RSS; (K) +rog . ME =N(PE /02 -1). )

So the reductlzon for r orders is greater therf below K and o yse in simulations, where the true process parameters are

smaller thana,” above K. This order K can be found by applying ynown, an efficient expression in the time domain has been

an order selection criterion to the sequence of theoretical residualgerived for ME [11]. ME can also be used for AR or MA models

In estimation, the variance of each parameter will approximatelyoy taking zeros for the absent MA or AR parameters. For models

give an additional expected decrease of RSS equgl. tbhis leads of the true structure and with orders>p’ and g&g, the

to the factor 2 in selection criteria, with equal weights assigned t%\symptotically achievable minimum of ME equals the number of

bias and to variance contributions [12]. The best AR order forggtimated parameters p'+q’, independent of the number of

prediction, for aknown ARMA process and a given N, is found psapvations [13]. By multiplying with N in (9), ME has been
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Fig.1 The average Model Error ME of the AR(i) model and two

ARMA(3,2) models estimated with Durbin’'s methods, as a

function of the AR model order; 2500 simulation runs,

N=100, true ARMA(3,2) process given in (10).

made particularly suited to describe the model quality for
different sample sizes.

n
0 10 50

Fig.1 shows the ME for three different models estimated from®

the same ARMA(3,2) process:

Xp =Xnq +0.88X,_, - 0%, _3=¢,+ 04%,_,- 08,_, (10)
with normally distributed independent innovatiasThe average
results for AR(i) models and for ARMA(3,2) models estimated

from that AR(i) model are presented. The theoretical optimal order:

of (5) or (6) for K and (7) for M for prediction and for parameter
accuracy are 10 and 31, respectively, for this example ah@N=

The average ME of the AR(10) model is 20.0 and the AR(31)

model gives 46.6 if used for prediction. The order 10 turns outto b

the best for prediction with an AR model in Fig.1, equal to the
theoretical order K. Durbin’s first method, applying least squares tq

delayed observations and reconstructed innovations, shows

irregular average behavior. This is caused by the runs with non-

invertible solutions for the MA part. This has to be repaired with
constraints on the solution or with mirroring of zeros with respect t
the unit circle. Whenever such a reparation is required, the M

values of Durbin’s first method become much greater. The bestﬁ:

value for ME, 19.9, is found for AR order 12. The problems with
non-invertible solutions increase with the AR order i in Fig.1.

e

Fig.1 and many similar simulation results are a verification that
the linear regression theory for model orders can be applied to the
infinite order AR processes by using (3) for the description of the
residual sum of squares as a function of the AR model order. This
has been verified for different sample sizes and ARMA(p,q)
processes with different p and q. The orders K and M found in
simulations agreed always with the theory developed in (5) or (6)
and in (7). It is clear that the accuracy of the best ARMA model,
expressed in ME (9), is much better than that of the best AR model
in this example. The ME value for the best ARMA(3,2) model is
6.0. This is quite close to the value 5 that is the maximum
achievable accuracy according to the asymptotical theory [13].

Applying backforecasting [14] in filtering the data tg before
the AR estimation in Durbin’'s second ARMA method generally
gives lower ME values in examples. So this backforecasting of data
before the observation interval is beneficial, as it is in computing
the residual variance for an estimated model and it has been used
for all results presented. Also in reconstruction of the input signal
with a finite approximation of (2) for Durbin’s first method, the

reconstruction of o IS better with backforecasting.

4. SLIDING WINDOW ALGORITHM

o far, it has been demonstrated that the two best AR orders are K
and M for aknownARMA process. This showed that the order M

is always greater than (or possibly equal to) K. In practice, the order
K, for prediction with the AR model, can be selected with a great
variety of order selection criteria. The penaltyn (6) influences

the balance between overfit and underfit: taking too high or too low

¥nodel orders. The smallest value éorhowever, without too much

statistical probability of overfit, is equal to 2, like in AIC [11].
Hence, that value 2 is used to select a value for K, and not for M. If

M would have to be selected directly from data, it would require a
penalty a that is almost one. Unfortunately, no order selection
criterion can select the desired order M from observations of a
rocess, because the variance of each estimated parameter is equal
0 the small total bias contribution that has to be detected in (7). A
useful order for long AR models can be found in practice with a
sliding window technique. This has been applied successfully to

(;__long AR models for MA estimation [4]. Details of some possible

gorithms are given here. and success depends heavily on details of
e implementation, so a precise description is presented.

Sliding Window ARMA(p',q") algorithm:  SW

Durbin’'s second method uses the AR parameters of Durbin's
first method as initial conditions; no iterations haven been used for
Fig.1. The MA part is computed from the parameters of the long
AR(i) model. AR order 31, equal to M of (7), gives the minimum
ME, 6.0, in Fig.1. Taking lower or higher orders than 31 gives a
higher ME, e.g. 10.7 for long AR order 10 and 6.8 for AR(50). It
turns out, also in many other examples, that taking lower long AR
orders than M can be much worse for the resulting quality of the
estimated ARMA model than taking too high orders for the long
AR model. The influence of iterations is very moderate. In thise
example, ME was smallest without iterations.

As far as advises for long AR models orders have been given in
the literature, it was the best order for prediction or selected with
AIC [10], which is similar. By using that order as the long AR
order, the ME of the resulting ARMA model is in most examples
much greater than the attainable minimum. By taking the highes
theoretical order, the ARMA model with the smallest ME is found.

AR(i) models are estimated for orders 1 until N/2. The order K’
is selected with CIC [15] or FSIC [16], order selection criteria
that perform well if the highest candidate for selection is greater
than N/10. Use of GIC(p) of (6) for selection would often
erroneously result in selection of an AR order close to N/2,
therefore finite sample criteria are preferred.

Compute initial conditions IC for the p’ AR parameters of
Durbin’s second method with his first ARMA method [7]. O1
is in the tables the intermediate AR order used in Durbin 1.

If IC fail in practice, because of ill-conditioning of the matrix of
regressors or if the AR part of the model is not stationary, the
estimated ARMA(p’-1,q’-1) model can be used, denoted IC1

an improvement has been tested by multiplying IC1 by the
ARMA(1,1) model that is found with Durbin’s first method
from the residuals of the ARMA(p’-1,9’-1), denoted IC2

The AR order for Durbin’s second method is O2, for which a
variety of possibilities is tested: SWs the ordenK'+p'+qg’



Table 1 The average Model Error and the theoretical optimal AR 5. CONCLUDING REMARKS

model orders in simulations for different implementations of ) .
Durbin’s second ARMA method, as a function of N. O1 and 02 arel neoretical values for two different long AR orders have been

AR orders used in Durbin’s first and second method, respectively. derived, that depend on the true ARMA process and on the sample

size. The first one is for prediction, the second for parameter
01,02 N=20 50 100 200 N=500 1000 2000 N=5000gccuracy. No selection criterion is available for the second one, but

KM 839 597 546 549 505 528 510 5003 sliding window algorithm defines a useful compromise for the
m’gws 88-213 2-113 5523; 2:;77 ‘égsg 55%54 55272 4.96practice of ARMA estimation with Durbin’s second method.
SW2.SW2 828 647 684 713 678 675 608 5 29 Durbin’s _second method_ for estlmatlon of ARMA models is
SW3SW3 828 505 Ser 58 529 S Sos 49 resented with the theoretically optimal AR orders and with
SW3; — és - é4 - '50 - ;19 5 ‘52 5 '79 5 60 z éggractical choices. Durbin’s method attained a very good accuracy
erate . . . . . . . . H
SWASWA 828 607 562 547 486 511 497 odor A;MA modelst, (;_Ioselto _thel_lo_vver bgunoll_f%r_l_r:ul sa}mplﬁ S|Izes. It
ICLSW3 7.8 579 677 838 131 222 400 94&OMbines computational simplicity and reliability with the large
IC2.SW3 791 569 612 675 774 983 116 145ampleaccuracy of non-linear maximum likelihood solutions.

IC2iterated 950 7.34 757 784 746 8.28 8.04 7.93 6. REFERENCES
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