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ABSTRACT

The digital waveguide mesh is an extension of the one-dimensional
digital waveguide technique. The mesh is used for simulation
of two- and three-dimensional wave propagation in musical in-
struments and acoustic spaces. The rectangular digital waveguide
mesh algorithm suffers from direction-dependent dispersion. By
using the interpolated mesh, nearly uniform wave propagation char-
acteristics are obtained in all directions. In this paper we show how
the dispersion error of the interpolated mesh can be reduced by fre-
quency warping. By using this technique the bandwidth where the
frequency accuracy is within 1% tolerance is more than doubled.

1. INTRODUCTION

One-dimensional digital waveguides are a discrete numerical meth-
od used to model musical instruments, such as string and wind in-
struments [1, 2]. Two-dimensional (2-D) and three-dimensional
(3-D) extensions of digital waveguides have been proposed for
simulation of plates, drums [3, 4], and acoustic spaces [5]. An-
other method which is similar can be obtained by using multi-
dimensional wave digital filters [6].

In the original multi-dimensional digital waveguide mesh, the
wave propagation speed is a function of propagation direction [3,
4, 7]. By using more advanced structures, such as the triangular
mesh [8, 9, 10], nearly uniform wave propagation characteristics
can be obtained in all directions. Another way how this can be
achieved is by using an interpolation technique with the rectangu-
lar mesh as presented in an earlier study [7]. Although the dis-
persion error of the triangular mesh is very small, the rectangular
structure is still attractive for some applications. It is conceptually
simple: the indexing of the mesh nodes is easy, and the tesselation
of a given plane or space is straightforward, especially in the case
of rectangular objects.

Also in the interpolated rectangular mesh there still remains
dispersion error which increases with frequency [7]. The error
is not very harmful in music synthesis applications, but in high-
accuracy numerical simulations the dispersion limits the valid band-
width of simulations. In this paper we show that the dispersion er-
ror in the interpolated rectangular digital waveguide mesh can be
reduced by frequency warping. This is possible because the error
is nearly independent of propagation direction. We examine the
2-D case, but the results may be extended to three dimensions.

The interpolated rectangular digital waveguide mesh is briefly
described and analyzed in Section 2. In Section 3, the frequency-
warping technique is introduced. The performance of the proposed

method is illustrated in Section 4 with simulated examples. Sec-
tion 5 concludes the paper.

2. INTERPOLATED MULTI-DIMENSIONAL DIGITAL
WAVEGUIDE MESH

A multi-dimensional rectangular digital waveguide mesh is a reg-
ular array of 1-D digital waveguides arranged along each perpen-
dicular dimension, interconnected between all the unit delay ele-
ments. A difference equation can be derived for the nodes of an
N -dimensional rectangular mesh [3, 4]:

pc(n) =
1

N

2NX

l=1

pl(n � 1) � pc(n� 2) (1)

wherep represents the displacement at a junction at time stepn,
subscriptc denotes the junction to be calculated, and indexl rep-
resents its2N axial neighbors.

Ideally, waves should propagate at the same speed in all di-
rections. In the original digital waveguide mesh, however, sample
updates occur along the2N axial directions only. This approxima-
tion causes inaccuracies in the wave propagation speed [3, 4, 7].
The ratio between the speed in the original 2-D digital waveg-
uide mesh and the ideal speed is presented by the dispersion factor
[10, 4]:
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where�1 and�2 are the normalized spatial frequency coordinates,
� =
p
�2
1
+ �2

2
andb = cos (2��1cT ) + cos (2��2cT ), andc is

the ideal wave propagation speed, that is,c = 1p
2

spatial samples
per sampling intervalT . The relative frequency error (RFE) is
obtained from the dispersion factor as

RFE(f) =
k(�)� kDC

kDC

� 100% (3)

wherekDC = lim�!0 k(�) andf is the normalized temporal fre-
quency such thatf = c�. The relative frequency error in axial and
diagonal directions is shown in Fig. 1(a). There is no error in the
diagonal direction but in the axial direction, where the maximal er-
ror occurs, the wave propagation speed decreases with frequency
so that 1% error is reached at0:077fs, wherefs is the sampling
frequency. Note that we show the RFE as a function of tempo-
ral frequency, since we want to compare our results against ideal
results that are also available as a function off (see Section 4).
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Figure 1: Relative frequency error in axial (solid) and diagonal
(dashed) directions in (a) the original, and (b) the interpolated dig-
ital waveguide mesh, as a function of normalized temporal fre-
quency, where 0.5 corresponds to the Nyquist frequency. The dot-
ted line indicates the zero error. Note that there is no error in the
original mesh in diagonal direction and thus the dashed and dotted
lines overlap in (a).

However, in previous literature the error has been presented as a
function of spatial frequency [3, 4, 8, 9, 10].

In the 2-D digital waveguide mesh algorithm each node in
the mesh has four neighbors. To obtain more homogeneous wave
propagation characteristics we insert a unit delay element also be-
tween diagonal neighbors. Since those lines end between actual
mesh nodes they must be interpolated [11]. We have used bilinear
interpolation resulting in the following equation [7]:

pc(n) =
1

4

3X

l=1

3X

k=1

hl;kpl;k(n� 1)� pc(n� 2) (4)

wherepl;k represent displacements atpc and its eight neighboring
nodes andhl;k are the weighting coefficients of each node such
that hd = h11 = h13 = h31 = h33 = 1=2, ha = h12 =

h21 = h32 = h23 =
p
2, andhc = h22 = 6 � 4

p
2. In this

structure there is no magnitude dissipation error [7]. The theo-
retical wave propagation speed in the interpolated mesh can be
determined from (2) with

b =
1

2
fha[cos (2��1cT ) + cos (2��2cT )] (5)

+ hd[cos (2��+cT ) + cos (2���cT )] +
hc
2
g (6)

where�+ = �1 + �2 and �� = �1 � �2. Figure 1(b) shows
the RFE in the interpolated digital waveguide mesh in axial and
diagonal directions which correspond to the minimal and maximal
error, respectively. There is still dispersion, but now it is nearly
independent of direction.

The interpolation technique can be also applied to the 3-D rect-
angular digital waveguide mesh as described in [12]. The results
show that also in that case it is possible to obtain nearly uniform
wave propagation characteristics in all directions.
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Figure 2: The warped-FIR filter structure which is used in the
dewarping of the input signal and in the warping of the simulation
result of the interpolated digital waveguide mesh.

3. FREQUENCY WARPING

The dispersion error causes frequency deviations in the digital
waveguide mesh simulation results. We propose to postprocess
the impulse response of the mesh using a warped-FIR filter [13,
14, 15], which effectively introduces frequency shifting to reduce
the dispersion error. The first-order allpass warping seems suitable
for our problem since the frequency error curves of the interpo-
lated mesh are monotonous and smooth (see Fig. 1(b)). Moreover,
a single correction function is considered adequate since there is
a small difference between maximal and minimal frequency er-
rors. The structure used in this method is an FIR filter where every
unit delay element has been replaced with a first-order allpass filter
with a transfer function

A(z) =
z�1 + �

1 + �z�1
(7)

as illustrated in Fig. 2. The extent of warping is determined by the
allpass filter coefficient�, which is the same for all the allpasses in
the chain. The tap coefficients are set equal to the signal samples
s(n) to be warped. When a unit impulse�(n) is fed into this filter
structure, the output signalsw(n) is the frequency-warped version
of the original signal.

3.1. Optimization of the Warping Factor

We have applied various different strategies in finding the optimal
value for�. In Fig. 3 we show RFE’s obtained with two values of
�. In the first one (Fig. 3(a)) the maximal error was minimized.
As a result the� = �0:1947 and the error is less than 1.5% on
the frequency band[0; 0:25fs]. The disadvantage of this method
is that it may produce quite large RFE already at low frequencies.

In the second optimization technique� is optimized such that
the RFE is below a given error limit upto a maximally high fre-
quency. In the results shown in Fig. 3(b) we have used a 1% error
limit which yields� = �0:1757 having the RFE below 1% upto
0:220fs .

The RFE after warping is obtained as follows:

RFEwarped(�) =
[k(�) � wratio(�; � � k(�)) �D]� kDC

kDC

�100%
(8)

wherewratio(�; �) returns the ratio of warping of given frequency
�, andD = 1��

1+�
is the phase delay at low frequencies caused by

warping [11, eq. 86].

3.2. Warped Interpolated Rectangular Mesh

The warped interpolated rectangular mesh simulations should be
conducted as follows. An arbitrary excitation signal can be used,
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Figure 3: Relative frequency error in axial (solid) and diago-
nal (dashed) directions with different values of� such that in (a)
� = �0:1947 and in (b)� = �0:1757 as a function of nor-
malized temporal frequency, where 0.5 corresponds to the Nyquist
frequency. The dotted line indicates the zero error.

but first it must be warped using��, which corresponds to de-
warping, and after simulation the response should be warped using
�. The warping slows down low frequencies byD and the bilinear
interpolation speeds up low frequencies bykDC = 1:10. There
are two ways how these effects can be taken into account: 1) by
downsampling the warped output signal by factorD

kDC
or 2) by

increasing the spatial sampling grid size of the mesh byD
kDC

.
The computational cost of the proposed technique lies in the

simulation itself and in warping of the excitation and the simula-
tion result. In the original structure for each time step and for each
node five summations and one binary shift is required. For the
interpolated rectangular mesh the required amount of operations
is nine summations and three multiplications. The warping is of
computational complexityO(L2) whereL is the length of the im-
pulse response. Thus the computational cost of warping depends
only on the length of the warped signal and not on the size of the
mesh.

To achieve the same accuracy as in the warped interpolated
rectangular mesh, the original rectangular mesh simulations should
be done with a spatial sampling grid spacing that is 2.9 times that
of the original one, since the dispersion error of 1.0% is obtained
at normalized temporal frequency 0.077 (� 0:22=2:9). It means
that over 8 (� 2:92) times more memory is required and the num-
ber of simulation steps is nearly tripled for a given time period.
Especially the memory usage may become a limiting factor.

The proposed warped interpolated rectangular mesh technique
suits best for non-real-time simulations where a reasonably large
mesh is used and a high frequency accuracy is required.

4. SIMULATION EXAMPLE

In this section, we simulate a vibrating rectangular plate using
three different methods and compare the results to illustrate the
effectiveness of the proposed frequency-warping technique. The
ideal plate is of square shape with clamped edges. The reflec-
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Figure 4: Eigenfrequencies of an ideal square plate, which is
clamped on each boundary, simulated using (a) the original, (b)
the interpolated, and (c) the warped (� = �0:1757) interpolated
2-D digital waveguide mesh. The ideal mode frequencies of the
plate are shown with vertical dashed lines.

tions from the boundaries are implemented as reflection coefficient
equal to�1. The results in Fig. 4 are from different numerical sim-
ulations with10� 10 mesh nodes. The source is located near one
corner of the plate (point (3,3)) and the receiver is at the opposite
corner (point (9,9)). The mesh is excited with an impulse that is in-
jected into a single node. It is also necessary to inject an attenuated
and advanced impulse into its four neighboring nodes [16].

In the case of the original and the interpolated mesh, 3200
samples were computed. The coefficients of the warped-FIR filter
were obtained by windowing the output signal of the interpolated
mesh with the right wing of a Hanning window. The resulting
warped signal was truncated to a length of 4900 samples. All the
magnitude responses in Fig. 4 were obtained by windowing the
signal with a right half of a Hanning window and computing a
65536-point FFT. The vertical lines in Fig. 4 show the ideal distinct
eigenfrequencies of the plate which have been calculated using the
Rayleigh equation [17].

Figure 4(a) presents the magnitude response obtained from the
original digital waveguide mesh. All of the mode frequencies are
either solved exactly or they are too low. Figure 4(b) shows the
response produced with the interpolated digital waveguide mesh.
It is seen that all the mode frequencies are systematically too low.
In Fig. 4(c) the frequency warped (� = �0:1757) result is shown.
Now some mode frequencies are slightly too high and some are
too low. The result of the new interpolated digital waveguide mesh
with frequency warping (Fig. 4(c)) is generally more accurate than
those in Figs. 4(a) and 4(b). Note that in Figs. 4(b) and 4(c) instead
of resampling the response, frequency has been scaled by1

kDC
=

0:9102 and D
kDC

= 1:298, respectively.
Table 1 shows the analytically solved eigenfrequencies and

simulation results of the original, the interpolated, and the warped
interpolated mesh. The eigenfrequencies are detected with the ac-
curacy of the corresponding RFE curves shown in Figs. 1(a), 1(b)
and 3(b) such that the error in diagonal modes (nx = ny) is pre-
sented by dashed lines and the error in axial modes (nx = 0_ny =
0) by solid lines (not present in this example due to the chosen



Table 1: Mode frequencies of the ideal square plate and the origi-
nal, the interpolated, and the warped (� = �0:1757) interpolated
mesh simulations. The error is included in parentheses.

Mode Warped
(nx; ny) Ideal Original Interpolated Interpolated

(1,1) .056 .056 (0.0%) .055 (-0.5%) .056 (0.1%)
(1,2) .088 .087 (-0.5%) .087 (-1.2%) .088 (0.3%)
(2,2) .111 .111 (0.0%) .109 (-2.1%) .111 (0.2%)
(1,3) .124 .122 (-1.7%) .121 (-2.3%) .125 (0.6%)
(2,3) .142 .141 (-0.5%) .137 (-3.4%) .142 (0.3%)
(1,4) .162 .156 (-3.6%) .156 (-4.0%) .163 (0.8%)
(3,3) .167 .167 (0.0%) .158 (-4.9%) .167 (0.1%)
(2,4) .176 .172 (-2.0%) .167 (-5.2%) .176 (0.3%)
(3,4) .196 .195 (-0.6%) .183 (-6.8%) .196 (-0.3%)
(1,5) .200 .187 (-6.4%) .188 (-6.4%) .201 (0.5%)
(2,5) .212 .202 (-4.4%) .196 (-7.6%) .211 (-0.1%)
(4,4) .222 .222 (0.0%) .202 (-8.9%) .220 (-1.1%)
(3,5) .229 .224 (-2.3%) .208 (-9.3%) .227 (-1.0%)
(1,6) .239 .215 (-10%) .216 (-9.7%) .237 (-0.8%)
(2,6) .248 .229 (-7.9%) .222 (-11%) .245 (-1.5%)

boundary condition). For example the error in mode(4; 4) is 0:0%
(see Table 1) in the original mesh since there is no dispersion error
in the diagonal direction (dashed line in Fig. 1(a)). The error in the
non-diagonal (nx 6= ny) modes is between the RFE of diagonal
and axial directions. For example, the error of mode (1,5) which
should ideally be at normalized frequency 0.200, is 0.5% too high
in the warped interpolated mesh. This RFE is located between
the solid and dashed lines in (Fig. 3(b)) since it is a non-diagonal
mode.

5. FUTURE WORK AND CONCLUSION

In the future, the frequency-warping technique will be applied also
to three-dimensional mesh algorithms. The interpolation technique
works for rectangular 3-D meshes as shown in [12] and finding the
appropriate warping factor should be straightforward. The warp-
ing technique is suitable for triangular digital waveguide mesh al-
gorithms as well [18].

In this paper we have shown that the 1% accurate bandwidth
of 2-D digital waveguide mesh simulations can be extended with
the interpolated warped structure when compared with the original
one. The proposed frequency warping reduces the dispersion er-
ror which is the major cause of inaccuracies in the original digital
waveguide mesh.
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