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ABSTRACT

A distance transform (DT) converts a binary image consisting of
foreground (feature) and background (non-feature) pixels into a
gray level image where each pixel contains the distance from the
corresponding pixel to the nearest foreground pixel. The compu-
tation of the exact Euclidean DT is computationally complex task
and, therefore, approximations are typically utilized. In this paper,
an area-efficient architecture for computing a DT approximation
is presented. The architecture utilizes order-based encoded dis-
tance representation allowing simple bitwise operations to be used
for determining the distance to the nearest foreground pixel in the
constrained neighborhood. Tabulated distance values are used thus
cumulative errors are avoided. Due to the simple operations real-
time operation can be expected.

1. INTRODUCTION

A distance transform (DT) converts a binary image consisting of
foreground (feature) and background (non-feature) pixels into a
gray level image where each pixel contains the distance from the
corresponding pixel to the nearest foreground pixel. The DT’s
have been used in several applications including morphological
processing, object detection [1], model-based image coding [2],
printed circuit board inspection [3], collision avoidance and path
finding in robotics [4], and data extraction from form documents
[5].

Let us assume a binaryN � N imageA = fa(i; j)g where
i; j = 0; : : : ; N � 1. The coordinates of foreground pixels are
collected into a setF = f(m;n) j a(m;n) = 1g. The Euclidean
Distance Transform (EDT) of an pixela(i; j) is calculated by

d
E(i; j) = min

(m;n)2F

p
(i�m)2 + (j � n)2 (1)

The calculation of the exact EDT is essentially a global opera-
tion and, therefore, computationally complex. Due to this fact, the
EDT is often approximated by propagating local distances. One
example of this approach is the 3-4 chamfer DT [6] where the
distance between 4-neighbours is approximated by 3 and diago-
nal neighbours by 4. Typical sequential chamfer DT algorithm
requires two complete scans over the image data; the forward scan
can be performed on-the-fly, but the backward scan can not be
initiated until the forward scan has been completed. This requires
expensive frame buffer for intermediate storage which implies also
increased latency. The pipelining is also difficult due to the data
dependencies. A hardware architecture of this kind is reported
in [7] and [8]. The parallel chamfer DT algorithms are iterative,
where the processing is repeated until no changes are performed.

This requires construction of an parallel processor array [9] which
is typically complex and expensive. In addition, parallel arrays
still require storage for the complete image.

Another approarch is the Unified Distance Transform (UDT)
algorithm [3] which uses independent row and column scans with
tabulated distance values for avoiding the error accumulation due
to the distance propagation. However, four scans are needed, and
its total execution time is typically long compared to chamfer DT’s.
In addition, the UDT contains data dependent processing.

The previously suggested algorithms have mostly been real-
ized on programmable architectures which typically fail to meet
either the real-time constraints or cost requirements. In order to
obtain cost effective realizations, e.g. for industrial machine vi-
sion applications, we have to find simpler solutions for approxi-
mated DT calculation. Such an implementation can be achieved
by utilizing thez-clipped DT approach defined in [10] as

d(i; j j z) = min (d(i; j); z) ; z > 0 (2)

In this paper, we present an application specific hardware ar-
chitecture for computingz-clipped DT based on the parallel algo-
rithm reported earlier in [11] and [12]. In Section 2, the clipped
DT algorithm is shortly described. In Section 3, the algorithm is
applied to sequential image data streams and the area-efficient DT
architecture is presented. Finally, Section 4 summarizes the paper.

2. CLIPPED DISTANCE TRANSFORM

The z-clipped DT in (2) implies that, in order to define the dis-
tances to foreground pixels, we can perform a local search in con-
strained neighborhood of a pixel instead of the exhaustive global
search found in (1). The size of the search area (see Fig. 1) is de-
fined by the clipping distancez and the set of coordinates in the
distance maskSz is defined as

Sz =
n
(i; j) j

p
i2 + j2 < z

o
(3)

We can also utilize the fact that the distance to a foreground
pixel at a certain location in the neighborhood is completely de-
fined by the location of the pixel in the distance maskSz. The
corresponding distance metric can be retrieved from a table and,
therefore, no arithmetic operations are needed. We use order-based
encoded distance vectors for representing the distance values; as-
sume an arrayRz containing all thesz different discrete distance
values existing in the distance maskSz

Rz =
n
(r0; r1; : : : ; rsz�1) j rk =

p
i2 + j2 : (4)

k = 0; : : : ; sz � 1; (i; j) 2 Sz; r0 < r1 < : : : < rsz�1

o
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Figure 1. The Euclidean distances and distance masks for mini-
mum distance search inz-clipped DT for clipping distancesz =
2:5 andz = 6:5.

The distances can be represented with a binary valued encoded
distance arrayEk

z containingsz elements as follows

E
k
z = (ek0 ; e

k
1 ; : : : ; e

k
sz�1)

T (5)

where

e
k
l =

�
1; if l = k; 0 � k < sz
0; otherwise

With the previous arrays we may define a binary valued repre-
sentationSez of the Euclidean valued distance maskSz

S
e
z(i; j) =

n
E
k
z j RzE

k
z =

p
i2 + j2; (i; j) 2 Sz

o
(6)

In order to find the set of distances to all the foreground pixels
in the constrained neighborhood of the pixela(i; j) we form an
encoded arrayGe(i; j j z) as follows

G
e(i; j j z) =

_
(m;n)2Sz

a(i+m; j + n)Sez(m;n) (7)

where
W

is logical OR operation.
In the order-based encoded representation the elements of the

distance vector are already ordered, thus finding the minimum cor-
responds to finding the first element with value one. The encoded
z-clipped DTde(i; j j z) is, therefore, defined as

de(i; j j z) = min (Ge(i; j j z)) = (b0; b1; : : : ; bsz�1)
T (8)

where

bk =

�
1; if bl = 0; 0 � l < k andGe

k(i; j j z) = 1
0; otherwise

whereGe
k(i; j j z) is thekth element in theGe(i; j j z) array.

The order-based encoded arrayde(i; j j z) has to be decoded
in order to obtain the final Euclidean valuedz-clipped DT. This is
easily performed with the aid of tabulated distance values inRz

defined in (4) as

d(i; j j z) =
�

z; if de(i; j j z) = (0; : : : ; 0)T

Rzd
e(i; j j z); otherwise

(9)
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Figure 2. Example of the clipped distance transform with the clip-
ping distance 2.5: a) the distance maskS2:5, b) the corresponding
order-based encoded distance maskSe2:5, and c) the neighborhood
of a pixela(i; j) in an binary imageA.

The previous procedure is illustrated with an example in Fig. 2
where clipping distance 2.5 is utilized. The corresponding Eu-
clidean distance maskS2:5 can be seen in Fig. 2.a) and the encoded
distance maskSe2:5 in Fig. 2.b). When the encoded distance mask
Se2:5 is applied, according to (7), to the pixela(i; j) with the neigh-
borhood illustrated in Fig. 2.c) the result would beGe(i; j j 2:5) =
(0; 1; 1; 1; 0)T . The minimum distance is found by selecting the
first element with value one and clearing all the other elements
which in this case resultsde(i; j j 2:5) = (0; 1; 0; 0; 0)T . Decod-
ing the encoded representation according to (9) resultsd(i; j j 2:5)
= R2:5 � de(i; j j 2:5) = 1.

3. HARDWARE ARCHITECTURE

Thez-clipped DT algorithm described in the previous section can
easily be applied to low-cost image processing systems where a
separate camera is used and the image data is transferred in se-
quential fashion. In such systems, the sequential DT architecture
can be used as a preprocessing unit connected to image data stream
as illustrated in Fig. 3 where the analog video signal is digitized
and transmitted as image data stream to feature extraction unit.
This may be, e.g., a real-time edge detector producing binary im-
age data stream. The next preprocessing unit would be the clipped
DT which computes distance data stream on-the-fly to be postpro-
cessed in a programmable processor.

The block diagram of the sequential clipped DT architecture
is also shown in Fig. 3. The architecture is divided into four func-
tional units: the neighborhood search unit, the minimum search
unit, the decoding unit, and the control unit.

3.1. Neighborhood Search Unit

Due to the single-pass property and locality the sequential imple-
mentation may follow the approach used in [13] where the sequen-
tial image data slides under a hardwired mask. This means that the
pixels under the mask need to be available at the same time instant,
i.e., in order to access all the pixels under the distance maskSz we
need a FIFO array containing at most2Ndz � 1e+ 2dz � 1e+ 1
1-bit storage elements, i.e., a simple shift register.
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Figure 3. An example system utilizing thez-clipped DT and the
block diagram of the clipped DT architecture.
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Figure 4. The neighborhood search unit for clipping distance 2.5.

Because the foreground pixels are labeled with binary one, ac-
cording to (7), the presence of foreground pixels at equal distances
within the distance mask can be identified by OR’ing all the pixel
values at delay elements in the shift register corresponding to these
locations. The structure of the search unit is illustrated in Fig. 4
where the foreground pixels are searched up to the clipping dis-
tance 2.5. Here notationGe

k(i; j j z) refers to thekth element of
the arrayGe(i; j j z). It should be noted that the latency of the
search is dependent on the size of the distance mask reflecting the
length of the shift register.

3.2. Minimum Search Unit

The presence of foreground pixel at certain distance at the neigh-
borhood is indicated by binary one at corresponding distance sig-
nal Ge

l (i; j j z); l = 0; : : : ; sz � 1. These signals are already
ordered according to the distance value they represent, thus the
minimum distance is found simply by finding the first signal con-
taining binary value one and clearing all the subsequent signals.
Such a structure for clipping distance 2.5 is illustrated in Fig. 5.
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Figure 5. The minimum search unit for clipping distance 2.5.

3.3. Decoding Unit

The resulting distance values generated by the minimum search
unit need to be decoded into standard number representation, but
there are several choises for this. The Euclidean distance values
are real numbers thus a floating-point representation would be suit-
able. However, in low-cost systems the floating-point arithmetic
is typically too expensive for real-time processing and fixed-point
representation is often used.

When converting the real valued distances into a fixed-point
format, the real values are quantized according to the required ac-
curacy and available word width. In practice this means scaling the
distance metric by weightw and rounding the result to the nearest
integer as follows

Q [d(i; j j z)]
w
= bd(i; j j z)w + 0:5c (10)

Typically in DSP applications fractional fixed-point represen-
tation is utilized where the weight is power of two. However, when
representing distances in square grids, better accuracy can be ob-
tained by utilizing the weights in used in the chamfer DT algo-
rithms, e.g., integer weights 3 and 5 [6]. Better approximations
can be obtained by allocating more bits for the representation, i.e.,
utilizing larger weights.

The weight affects also the size of the distance table. This
can be seen from Table 1 where the bit patterns of some quantized
representations are listed. It can be seen thatQ [d(i; j j 4:0)]3 and
Q [d(i; j j 4:0)]4 require both 5-bit representation, but the weight 3
produces only eight different distance metrics with smaller relative
maximum error (e3 = 0:0572%) than the fractional representation
with weight 4 (e4 = 0:0607%). The same kind of behaviour can
be expected when utilizing greater clipping distances. Once the
representation is selected, the implementation of the decoding unit
is simple decoding logic.

The previously described decoding approach results imple-
mentations that support only one number representation. This re-
stricts the applicability of the fabricated DT chip. The interfacing
can be generalized by replacing the quantized metrics in a table
by index to a table, i.e., the metrics table is stored into the pro-
grammable processor instead of including them into the decoding
logic. The decoding logic provides only indeces to the table which
reduces the number of signals in the DT architecture and allows
the floating-point format to be used for representing the metrics in
table. The disadvantage is obviously the need for an extra table
and an extra table access in the processor.

Although in the previous discussion the minimum search and
the decoding are separate units, in practical implementations these
may be combined because the intermediate encoded distance rep-
resentationde(i; j j z) is not needed and the final distances can



Table 1. The fixed-point representations of quantized distance
metricsQ [d(i; j j 4:0)]

w
.

Accurate w = 3 w = 22 w = 5 w = 23

Distance 5-bit 5-bit 6-bit 6-bit

0 00000 00000 000000 000000
1 00011 00100 000101 001000p
2 00100 00110 000111 001011

2 00110 01000 001010 010000p
5 00111 01001 001011 010010p
8 01000 01011 001110 010111

3 01001 01100 001111 011000p
10 01001 01101 010000 011001p
13 01011 01110 010010 011101
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Figure 6. The combined minimum search and decoding unit for
clipping distance 2.5.

be computed directly from theGe(i; j j z) signals in Fig. 3. This
approach is reflected in Fig. 6 where the index to the table contain-
ing metrics ford(i; j j 2:5) is formed directly from the encoded
distance signals.

The whole architecture will contain multi-level logic networks
which are the critical paths in the design especially when larger
clipping distances are used. Fortunately these are combinatorial
logic networks without any feedback loops, thus the paths can be
avoided by pipelining the design. In addition, pipelining a struc-
ture of this kind is fairly easy with the aid of modern synthesis
tools, which are capable of finding the optimal locations for the
pipeline registers in the network for balancing the delays.

3.4. Control Unit

The control unit is needed to generate control signals according
to line and frame synchronization pulses obtained from the video
signal. Apart from the obvious timing signal generation tasks, the
control unit has an important task for guiding the neighborhood
search operation; in the shift register, pixela(i; N � 1) at the end
of an image line is followed by a pixela(i+1; 0) at the beginning
of the next image line thus those pixels are fed to the neighbor-
hood search operation at the same time although they should never
occur under the distance mask simultaneously. Therefore, when
the distance mask is placed near the image borders, the control
unit generates signals which force certain shift register elements
to output zero value to the OR networks seen in Fig. 6.

4. SUMMARY

In this paper, we have applied previously presented parallel DT al-
gorithm to sequential computation and described an area-efficient
DT architecture which is well suited to high-speed operation. This
architecture has been verified in VHDL environment and synthe-
sized for a generic ASIC technology. Next we are developing
FPGA prototypes to be used in image processing systems based on
DSP processors for evaluating the total system performance. The
performance and area measures obtained from the prototypes are
to be compared with other DT algorithms and implementations.
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