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ABSTRACT

In this paper we propose a method for the estimation
of time-varying autoregressive processes. The approach
is essentially to regularize the heavily underdetermined
unconstrained prediction equations with a smoothness
priors type side constraint. The implementation of
nonhomogenous smoothness properties is straightfor-
ward. The method is compared to the usual determistic
regression approach (TVAR) in which the coefficient
evolutions are constrained to a subspace. It is shown
that the typical transient oscillations of TVAR can be
avoided with the proposed method.

1. INTRODUCTION

In the modelling and estimation of nonstationary pro-
cesses the direct estimation of the nonstationary co-
variance matrix usually requires much more data than
is available. For this reason parametric models with
time-varying coefficients are often employed. If the
coefficients at each time are treated as (structurally)
independent parameters, the number of parameters is
usually greater than the amount of data. There are two
main approaches to overcome this problem.

The first approach is to constrain the corresponding
time-varying coefficients to a subspace, that is, they
are constrained to be linear combinations of a set of
basis functions [1, 2, 3]. This is called the determin-
istic regression approach. The main problem in deter-
ministic regression is the choice of the basis functions
(and the corresponding subspace). The resulting esti-
mation problem acquires also ill-posed character when
the number of basis functions is increased. On the other
hand, the basis functions determine the approximation
capabilities of the method. In most cases the selec-
tion of the basis functions has been more or less ad
hoc. Popular choices for the basis functions include
Fourier bases (sinusoids), polynomial bases and prolate
spheroidal wave bases. If something is known of the
characteristics of the nonstationarity, the basis func-
tions have to be constructed specially for each case. In

[4] a principal component type approach was used in
the construction of a set of optimal basis functions for
a special nonstationarity model (a single smooth tran-
sition). This construction is, however, rather involved
and it is not applicable to such cases in which the in-
formation on the nonstationarity is ambiguous.

The other approach is to use adaptive algorithms
such as the LMS and RLS algorithms and the Kalman
filter [5]. This is called the stochastic regression ap-
proach. The usual implementation is to “connect” the
adaptive algorithms to yield one step predictors. In
the LMS and RLS algorithms only a coarse adjust-
ment of the tracking properties can be made. With
the Kalman filter more sophisticated evolution models
can be used, although the simplest possible model, the
random walk model, is the most popular one. In the
random walk model the implicit assumption is that the
rate of change of the coefficient evolutions are small.
However, in many applications, such as EEG analysis,
all expectable changes are not necessarily slow.

In [6, 7, 8] the Kalman filter was employed with
the smoothness prior (SP) evolution model. In the SP
model the norms of some higher differences of the co-
efficient evolutions are assumed to be small. This ap-
proach allows relatively fast changes without introduc-
ing excessive noisiness of the estimates. However, the
stochastic regression approaches are not always pre-
ferred since they they sometimes necessitate several
runs to obtain initial (and possibly final) estimates for
the coefficients and certain covariance matrices. Such
situations occur especially with short data segments.

In this paper we propose a nonparametric deter-
ministic regression scheme that does not utilize sub-
space constraints. Instead, the approach is based on in-
terpreting the heavily underdetermined unconstrained
parameter estimation problem as an ill-posed inverse
problem and using Tikhonov-type regularization with
smoothness priors type regularizing side constraints.
Furthermore, we suggest the use of nonhomogenous
weighting of the associated regularization operators
and the use of several difference side constraints si-



multaneously. Although the approach is well suited
to more general time series models, we consider here
only the time-varying AR(p) estimation case.

2. METHODS

The general form of a TVAR(p) model for a process xt
is

xt =
p∑
k=1

ak(t)xt−k + et , (1)

where ak(t) are the coefficient evolutions and et is the
prediction error process. If the process xt can be ap-
proximated with the TVAR(p) model, the prediction
error process can be used to approximate the associ-
ated innovation process. However, if no constraints are
imposed on the coefficient evolutions, the estimation of
the coefficient evolution is clearly a meaningless task.

2.1. Deterministic regression TVAR models

In the deterministic regression TVAR problem the co-
efficients are constrained to

ak(t) =
M∑
`=0

ck`φ`(t) , (2)

where φ`(t), ` = 0, . . . ,M are the basis functions.
The minimization of the 2-norm of the residuals in

(1) with the constraints (2) leads to a quadratic prob-
lem with the (M + 1)p parameters ck`. The TVAR
problem was introduced first in [1] and has thereafter
been partially reformulated and applied to EEG and
speech modelling for example in [2, 9, 4, 10].

The traditional method for the solution of the con-
strained LS problem (1–2) is the covariance formulation
[2]. The LS solution can be accessed more conveniently
by writing c = (c10, . . . , c1M , . . . , cp0, . . . , cpM )T, X =
(xp+1, . . . , xT )T, E = (ep+1, . . . , eT )T and regressor
matrix H = (H10, . . . ,H1M , . . . ,Hp0, . . . ,HpM) where
Hk` = (φ`(p+1)xp+1−k, . . . , φ`(T )xT−k)T and (·)T de-
notes transpose [11]. The least squares problem can
then be stated as

min
c
‖X −Hc‖2 . (3)

2.2. Deterministic regression smoothness pri-
ors TVAR model

Define the matrices K` ∈ R(T−p−1)×T with elements

K`(i, j) = xi+p−`δj−i−p , ` = 1, . . . , p

where δ(·) denotes the Kronecker symbol. The uncon-
strained LS problem that corresponds to (1) can then

be written in the form

min
a
‖X −Ka‖2 , (4)

where

K = (K1, . . . ,Kp)
a = (a1(1), . . . , a1(T ), . . . , ap(1), . . . , ap(T ))T

and where X is as above. It is clear that the null space
of the matrix K has at least dimension pT −T + p and
that the pseudoinverse solution has usually little to do
with the actual coefficient evolutions. Thus the prob-
lem (4) exhibits the characteristics of ill-posed inverse
problems.

One of the most popular approaches in the solution
of inverse problems is to use Tikhonov regularization
[12] that involves the solution of the problem

min
a

{
‖X −Ka‖22 +W (a)

}
, (5)

where W (a) ≥ 0 is the side constraint functional, that
should be small for all feasible solutions a. The most
common side constraints are

W (a) = α2‖a‖22
W (a) = α2‖D`a‖22

where α is the regularization parameter and D` denotes
the `’th difference operator.

We seek thus the solution of the modified problem

min
a

{
‖X −Ka‖22 +

p∑
k=1

M∑
`=0

‖αk,`(t)D`ak(t)‖22

}
(6)

where αk,`(t) are weight functions that are constructed
based on the a priori assumptions on the evolution
properties of the time-varying coefficients. We call the
solutions corresponding to (6) as deterministic regres-
sion smoothness priors (DRSP) estimates.

Usually we set αk,`(t) ≡ αk,` but sometimes other
feasible selections are possible, for instance, when a
sharp transition is expected at an approximately known
instant.

The problem (6) can be written in the augmented
least squares form as mina ‖X̃ − K̃a‖2 where

K̃ =
(
K
L

)
X̃ = (XT, 0, . . . , 0)T



L =



α̃1,0D0

...
α̃1,MDM

α̃2,0D0

...
α̃2,MDM

. . .
α̃p,0D0

...
α̃p,MDM


or if (as is usually appropriate) αk,`(t) = α`(t), we can
write

L = Ip ⊗

 α̃0D0

...
α̃MDM


where α̃k,` are diagonal weighting matrices correspond-
ing to αk,`(t), Ip is a p×p identity matrix and⊗ denotes
the Kronecker (tensor) product.

The matrix K̃ is very sparse which means that spe-
cialized least squares algorithms can be used. The den-
sity of K̃ is of the order of (M + 1)/T . See e.g. [13] for
computational issues of sparse least squares problem.
Thus the computational burden in the solution of (6)
is not very big.

3. A SIMULATION STUDY

We study the estimation of the time-varying coefficients
of two nonstationary AR(2) processes. The coefficients
of the first example process vary smoothly while the co-
efficients of the second process contain an abrupt jump
that is clearly visible from the data, see Figs. 1 and 2.

The TVARLS and DRSP estimates are computed
for 20 realizations of the test processes and the means
and standard deviations for the coefficient estimates
are calculated. In both cases the weighting functions
αk,`(t) were given constant values except for an ex-
pected coefficient jump at about t = 128 where a notch
was introduced.

In TVARLS a Fourier basis withM = 11 basis func-
tions was used (the use of more basis functions resulted
in rank deficiency of the matrix H. In both cases the
relevant parameters of DRSP were N = 3, αk,1 = 10,
αk,1 = 1000, k = 1, 2 (except for the notch), αk,` = 0,
` 6= 1, 3.

The results for the coefficient a1(t) are shown in
Figs. 3–6. The main differences between the TVARLS
and DRSP estimates are that 1) the bias of the DRSP
coefficient estimates is smaller and 2) that the DRSP
solutions have considerably smaller tendency to yield
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Figure 1: a) A realization of the process xt with
smoothly evolving coefficients.
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Figure 2: A realization of the process xt with an abrupt
jump in the coefficients. The step occurs at time t =
128.

oscillatory behaviour near the end points and the dis-
continuities of the coefficient evolutions. Without the
nonhomogenous weighting the DRSP estimates exhibit
almost as severe oscillating properties as the TVARLS
estimates.

4. CONCLUSIONS

We have proposed an approach to the estimation of
time-varying parametric models. The approach is
based on Tikhonov-type regularization of the uncon-
strained underdetermined parameter estimation prob-
lem. As the regularization side constraint we use a
“weighted Sobolev norm” generalization of the smooth-
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Figure 3: The true coefficient evolution a1(t) (bold),
the mean SP estimate and the corresponding standard
deviation interval: smooth evolution case.
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Figure 4: The true coefficient evolution a1(t) (bold),
the mean TVARLS estimate and the corresponding
standard deviation interval. M = 11 Fourier basis
functions φm(t) were used: smooth evolution case.
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Figure 5: The true coefficient evolution a1(t) (bold),
the mean SP estimate and the corresponding standard
deviation interval: nonsmooth evolution case.

ness priors idea, that Kitagawa and Gersch used as
evolution model in an earlier stochastic regression ap-
proach. The proposed method bears also a connection
to more general Bayesian time series models since the
side constraint can be shown to correspond to the prior
distribution of the parameters [14]. This connection is
especially clear if all associated distributions can be
assumed to be Gaussian.
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Figure 6: The true coefficient evolution a1(t) (bold),
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