
C/C++ COMPILER SUPPORT FOR SIEMENS TRICORE DSP
INSTRUCTION SET

Hao Shi, Roger Arnold and Karl Westerholz

Siemens Microelectronics, Inc
2480 North First Street

San Jose, California 95131, USA

ABSTRACT
How to make compilers more useful for developing DSP
applications and reduce reliance on assembly coding has long
been a topic of interest in the DSP community. This paper
presents Siemens solutions for supporting its TriCore
DSP/microcontroller architecture, including SIMD instructions,
at the C/C++ level. Two solutions based on either extending
C/C++ language with the new built-in DSP data types or
developing an external DSP class library are investigated. First
cut implementations of both methods have achieved 80%
coverage of the TriCore instruction set, which is 30 percent
higher than the coverage before DSP support was added.

1. INTRODUCTION

A DSP processor distinguishes itself from a general-purpose
processor by its cycle-efficient instruction set [1]. Single-cycle
multiply-accumulate (MAC) instructions, saturated overflow
behavior and the left-justified fraction arithmetic operations are
the norm in a DSP instruction set. In addition, dedicated
addressing modes such as bit-reverse and circular buffer
addressing, together with load/store instructions that can be
issued in parallel with the arithmetic operations, make the Fast
Fourier Transform (FFT) and the digital filter algorithms very
efficient. A zero-overhead loop instruction is essential for
speeding-up the tight loops of vector manipulation. With the fast
growth of multimedia applications in recent years, SIMD (Single
Instruction Multiple Data) instructions are also becoming
popular.

Supporting these DSP specific instructions in C/C++ language
has long been a topic of interest [6][7][8], since the ability to
program DSP applications in these languages would help to
reduce system cost and time-to-market.

A primitive way to do so is to wrap every DSP instruction with a
C intrinsic or library function [2]. The advantage of this
approach is that the applications, built upon these basic DSP
functions, can be ported without extra effort if all the basic DSP
functions are ported. The explicit DSP function layer, however,
is not transparent to both C language rules and the C
programmer. This leads to less efficient code and poor code
readability

Beyond the basic functions that wrap DSP instructions for C
programmer, TriCore’s development tools introduce a second
wrapper that wraps the basic DSP functions with new data types
or classes and the corresponding operations. With this second

wrapper, the layer of the basic functions is hidden. One does not
have to remember several hundred basic functions in order to
write DSP C/C++ code that is efficient and easy to read.

The rest of this paper is organized as follows. In Section 2, we
discuss the definition of the DSP extensions or classes: what are
the data types that we need and why. Some detailed rules of the
data type operations will also be discussed. In Section 3, we then
compare two different implementation approaches and evaluate
the effectiveness of the language construction in supporting DSP.
Finally, we summarize major findings and outline future work.

2. DSP SUPPORT IN C/C++

2.1 Four Levels of Support

As shown in Fig. 1, there are four levels of support for DSP
C/C++ code development.

Figure 1. Four Levels of DSP C Language Support

First, there are assembly-coded DSP C libraries that take full
advantage of the TriCore DSP instructions, including SIMD
instructions. These can be called directly from C programs. At a
parallel level, we have a layer of the basic functions that wrap the
individual DSP instructions of the architecture and make them
accessible from C code. From a C programmer’s point of view,
this layer of basic functions is a “virtual TriCore.” Above that
level, an abstract layer of the data types of either C language
extensions or C++ classes wraps the basic function layer to make
it transparent to C/C++ programmer. Finally, at the top level, the
TriCore compiler can automatically identify the proper cases to
insert MAC, zero-overhead loop and other efficient DSP
instructions based on the expression and the loop information. In
this paper, we will concentrate on the abstract layer of data types.
To simplify our discussion, we use the term data type to indicate
both built-in C language DSP extensions and the dedicated DSP
C++ classes when it does not cause confusion.

Now, in what sense do we use the term C extensions? Any
programming language is characterized by a set of data types, an
associated set of operations on those data types, and a syntax, or

Compiler Optimized DSP C Code

Assembly-
Coded DSP C

Libraries

DSP Extensions or Classes

Basic Functions (Virtual TriCore)

TriCore DSP Instruction Set

set of rules for declaring objects and expressing operations on
those objects. The set of built-in data types and operations of the
C language is inadequate for use in DSP applications; additional
types and operations are needed. Adding them to C introduces
some new keywords, and requires new operators to be added to
the intermediate language (IL) that the compiler uses to translate
the C source code for the code generator. However, it does not
require any change to the basic language syntax. C programs that
use the new types and operations still look like C programs, both
to the programmer and to the C compiler.

The C++ language differs from C, in that the language itself
provides a built-in means to extend the data types and operations
available to programmers. The data types and operations needed
for DSP support can be expressed in C++ class libraries, without
resort to language extensions.

There are subtle but significant differences between C language
extensions vs. C++ class libraries as bases for supporting DSP
applications. Before getting to those, however, we will examine
some of the specific data types and operations required.

2.2 Fraction Data Types

Integers in C language are right-justified fixed-point data types.
Left-justified fixed-point data types (pure fraction), however, are
also very useful in many DSP applications. Fractions offer better
dynamic range in both input and output side of a multiply-
accumulator of fixed word length. Therefore, TriCore provides
full support for the fraction data types [5].

To make these cycle-efficient fraction arithmetic instructions
available to a C/C++ programmer, three fixed-point data types
have been introduced. The formats of these new data types are
illustrated in Fig. 2. Both the 32-bit fraction _fract and the 16-
bit short fraction _sfract are defined in the range of [-1, 1). The
64-bit signed accumulator data type _accum is defined in the
range of [2-17, 217) with both whole number and fraction parts. It
is introduced for the accumulation (or multiply-accumulation) of
the fraction data types with 17 guard-bits.

Figure 2. Format of the New Fixed-Point Data Types

Logic and arithmetic operations of the fraction operands are the
same as those for the integers except multiplication and division.
Dedicated fraction multiplication is implemented by a TriCore
DSP instruction that does both multiplication and binary point
adjustment in one cycle. The division operator “/” is defined as
to return a fraction result, and thus assumes that the magnitude of

the dividend is smaller than that of the divisor. A second fraction
division function, which corresponds to integer division, is
provided for the case where the magnitude of the dividend is
larger than that of the divisor.

According to the C language rule, when mixed data types appear
in the same arithmetic operation, the less advanced data type
should be first promoted to the advanced data type before the
evaluation is done. The promotion rules for fraction data types
are as follows: _sfract is the least advanced data type, _fract the
second least advanced, and _accum between long and int. There
are two exceptions of these promotion rules in the mixed integer-
fraction multiplication and division. Since they are common
operations in DSP applications, special rules are defined for
better accuracy and efficiency. A commutative multiplication
operator “*” of an integer and a fraction will always give a
fraction regardless of whether or not the magnitude of the
product is less than one. An additional basic function that
returns an integer result from of a mixed multiplication is
provided. In mixed division, however, the data type of the
quotient follows that of the dividend. Thus, long/_fract gives a
long, while _fract / long gives a _fract.

Data type conversions are important not only for supporting
mixed data type operations but also for constant fraction
representations. A constant should be treated implicitly as a
fraction if (1) its value is in between [-1, 1), and (2) it is assigned
to a fraction variable or appears in a fraction expression.
Similarly, an _accum constant can be defined as a constant with
its value in the range of [-217, 217), and is assigned to an _accum
variable, or appears in an _accum or a fraction expression. Since
speed is most important for DSP applications, converting a fixed-
point constant to its internal expression should be done at
compile time.

2.3 Packed Data Types

SIMD instructions exploit the parallelism of processing multiple
sub-word data fields within one instruction. Although it is
theoretically possible for compiler to pack data implicitly by
unrolling a loop and merging iterations, doing so is beyond the
capability of available compilers. Instead, explicitly packed data
types are defined. They offer the flexibility for C programmer to
use the SIMD instructions consciously. Packed data types and
their operations are especially useful for image processing.

Fig. 3 shows the format of the _packb and _packhw data types.
We can also pack two _sfract data types to form a complex
fraction data type. Special efforts were made to make TriCore
manipulate complex numbers efficiently.

Figure 3. Format of the Packed Data Types

The way the packed data types are manipulated is determined by
their dual characteristics. On one hand, data of the packed type

half word 2 half word 1_packhw:
31 0

byte 3 byte 2 byte 1_packb:

31 0

byte 4

Binary point

_sfract: fractions

_accum:

Binary point

fractionwhole numbers
63 46 45 0

Binary point

_fract: fractions
31 0

15 0

is moved around, operated upon, and passed to or returned from
C functions as one unit. On the other hand, packed data types
are structures with private members of the same basic types.
Therefore, basic functions to initialize, access, and mutate these
members have to be provided. Since a constant of a packed data
type is defined as a 32-bit integer, a 32-bit integer can be used to
initialize a packed variable.

We have implemented two sets of accessors and mutators. The
first set, for example,

char _getbytei(_packb*)
void _setbytei(_packb*, char)

uses TriCore’s sub-word load/store instructions ld.b and st.b.
The second set, for example,

char _extractbytei(_packb)
_packb _insertbytei(_packb, char)

uses TriCore’s insert/extract instructions. Choosing the right set
will help generate the most efficient DSP code.

Arithmetic operations on the packed data types include addition,
subtraction, multiplication, negation, absolute value, compar-
ison, and count leading sign. Due to the inherent array
characteristics of packed data types, no simple division is
defined for them. Logic operations for packed data types include
shift and bit-wise logic operations.

2.4 Circular Buffer Pointer

Many DSP applications use circular buffers for real-time data.
Maintaining a circular buffer involves updating the buffer index
modulo the buffer length. TriCore provides a specific addressing
mode and a data structure for this kind of application. By
introducing _circ qualifier or template, we made this special
addressing mode available to the C/C++ programmer. Fig. 4
shows the format of this 64-bit data type.

Figure 4. Format of the Circular Buffer Pointer Data Type

Similar to the packed data types, a circular buffer pointer also has
dual characteristics. It can be passed to or returned from C
functions as one entity, and has to be initialized with a dedicated
basic function: void _circ *_initcirc(void*, size_t, int). The first
parameter points to the base address of the circular buffer that
has been dynamically or statically allocated. The second
parameter is the size in bytes of the circular buffer. The third one
is the offset in bytes of an element in the buffer.

A circular buffer pointer can be converted into a normal pointer
of any type. The converted address is equal to the sum of the
base address and the offset. The concept of conversion is
essential for circular buffer pointer operations, because
comparison of two pointers, judgement of a null pointer and
passing a circular buffer pointer to a pointer parameter declared
as void* are all based on the conversion.

Other circular buffer pointer operations include increment,
decrement, subtraction or addition of a constant, and subtraction
of two circular pointers. Subtraction of two circular buffer

pointers to the same data type is legal even if the base addresses
of them are different.

2.5 Saturating Data Types

Reflecting analog circuit behavior, DSP algorithms often expect
saturation on overflow. TriCore provides a full set of arithmetic
instructions to deal with both wrapping and saturating overflow.
Although saturation behavior can be implemented as special
operators, we chose to bind the overflow behavior with the new
data types to maintain the second level abstraction of C/C++
language.

In C language extensions, a new qualifier, _sat, is introduced to
follow the basic data types int, long, _sfract, and _fract.
Qualifier _sat signals that all arithmetic operations related to the
data type are performed with saturated instructions. Although
conversions between _sat and non-_sat data types are not
necessary, one can use type-cast to enable/disable saturated
operations. The following code shows how type casting works in
this context.

_fract _sat a;
_fract b, c;
…
/* Sum and product evaluated with saturation */
a = a * b + c;.
a = (_fract _sat)b + c;
…
/* Sum and product evaluated without saturation */
b = (_fract)a + b * c;

In C++ implementation, a saturated class was developed for each
of the type int, long, _sfract and _fract.

3. IMPLEMENTATION

3.1 Class Library vs. Language Extensions

Both the class library and the extension approaches have been
investigated via direct implementation. Although there are pros
and cons for each approach, both can be used to implement the
features discussed in Section 2. In this sub section we compare
the two approaches.

Class Library

The idea of the class library approach is to make the DSP support
independent of the compiler so as to achieve better language
portability and compatibility. This also means, however, we
have to construct many overloaded functions to handle cases that,
for built-in types, are handled automatically by the compiler. For
example, any commutative binary operators between mixed data
types have to be implemented twice, according to which operand
is first. Also, overloaded functions in C++ are resolved on the
basis of input argument types alone; the desired result type
cannot be considered. That often leads to conversions that could
be avoided if intelligence about the types were built-in to the
compiler. To compensate, knowledge about the types must be
added to the code generator and optimizer.

Another limitation of the class library approach is in the handling
of literal constants. C++ does not provide any means to associate

032 3148 4763
buffer base addressoffsetbuffer size

compile-time processing of a literal string with a user-defined
class type. The only way to construct a constant array of _fract
data values—e.g., the coefficients of an FIR filter—is to overload
the array with an array of short values (16-bit integers),
initialized with integer values whose binary representations are
equivalent to the desired _fract values.

Because features implemented with C++ template mechansism
are not available to pure C language programs, it is impossible to
support exactly the same level 3 programming interface with the
two approaches. Nevertheless, the ability to develop software on
a host system to which the DSP class library has been ported
makes the class library approach attractive..

Language Extensions

The idea of using language extensions is to achieve the best code
optimization and programming flexibility by introducing native
data types. For example, it is easier in the language extension
approach to implement the fraction operators inline, and
consequently save the overhead of function calls often imposed
by class library approach. The down side is the lack of high-
level portability and the requirement for compiler front-end
changes. Note, however, that the front-end changes are not
fundamental; they are mostly just a matter of applying common C
rules to an extended set of data types.

3.2 Virtual TriCore and Porting

As explained earlier, “virtual TriCore” is the term given to the
layer of basic functions used to implement operations on the DSP
data types defined in the DSP extensions or class libraries. Table
1 presents the measure of TriCore in supporting these functions.
It shows that about 62% of the basic DSP functions are
implemented with only one TriCore instruction.

Table 1. Measure of TriCore’s High Level Language Support

Number of instructions in
DSP intrinsic function

Percentage of intrinsic
functions of specified
number of instructions

1 62%

2 9%

3 10%

≥4 19%

From the TriCore designer’s point of view, on the other hand, the
more a compiler covers the TriCore instruction set, the better it
supports TriCore. Statistics show that the compiler with the new
data types covers 80% of TriCore instruction set, while compiler
without the new data types covers only 50% of TriCore
instruction set.

The above indicates that the virtual TriCore and TriCore match
very well in supporting DSP C programming. Virtual TriCore
also provides a means that makes porting of C code above it
much easier.

The new DSP data types present the virtual TriCore in an
intuitive way to C programmers. To port the C code above the

virtual TriCore, a C preprocessor can be used to develop this
hidden layer. It is only at this level, both C and C++ DSP codes
become portable. Here, porting the code means porting the
virtual TriCore to the target platform. When porting C
extensions, one has to define the DSP data types as standard C
types or structures with equivalent memory size, and interpret the
variables of these data types correctly.

4. SUMMARY

This paper presented some Siemens solutions for supporting its
TriCore DSP instruction set, including SIMD instructions, at
C/C++ level. A solution that extends C/C++ language with new
built-in DSP data types and a solution based on external DSP
classes were investigated. The first cut implementation shows
that 80% of the TriCore instruction set coverage can be achieved
with either method. The major advantage of the class library
approach is its high-level portability. The DSP extensions, on
the other hand, deliver better code. The “virtual TriCore”
concept was introduced as a C level language interface of
TriCore DSP instructions and as the bridge for porting.

The next logical step is to optimize both TriCore and virtual
TriCore to further increase one-instruction basic function rate.
Optimization on the fourth level in Fig. 1 is of great interest.
Wrapping the level one DSP library to achieve an even higher
level abstract language construction is also under investigation.

5. ACKNOWLEDEMENT

We want to thank Craig Franklin and Green Hills compiler team,
and Dick Streefland and Tasking compiler team for the hard
development work on which this paper is based. Also thanks to
Dr. Steve Zhang for his reviewing the paper and his good
suggestions. Finally, thanks to Rod Fleck and Dieter Stengl of
Siemens who give constant support to this effort.

6. REFERENCES
[1] H. Shi and R. E Owen, “Evaluating DSP Instruction Set

Extensions in High-performance Processors.” Class Notes
of DSP World Spring Design Conference, April 1998.

[2] Visual Instruction Set User’s Guide, Sun Microelectronics,
May 1995.

[3] ARM Signal Processing Architecture Reference Manual,
Advanced RISC Machines Ltd., March 1997.

[4] M. Levy. “DSP-Architecture Directory”. EDN, May 1998.
[5] TriCore Architecture Manual, Siemens AG, Sept. 1997.
[6] K. Baldwin, R. Piedra et al, “Guildlines for Efficient C

Code Generation in Accumulator-based DSPs.” ICSPAT
Proceeding, Sept. 1997.

[7] J. Mulder, T. Grotker et al, “C++ Based Implementation of
Mixed Control/Data Flow Systems.” ICSPAT Proceeding,
Sept. 1997.

[8] R. J. Ridder, “Trends in Application Programming for DSP”
ICSPAT Proceeding, Sept. 1997.

