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ABSTRACT

The construction of boundary filters without DC leakage for
two-channel paraunitary FIR filter banks is considered. The
design procedure is based on orthogonal boundary filters
which are optimal in a weighted mean square error sense in
the Fourier domain and on Householder transformation of
boundary filter matrices. Simulation results are presented
for boundary filters based on minimum-phase Daubechies
filters.

1. INTRODUCTION

Two-channel perfect reconstruction filter banks are widely
used in subband coding applications. For infinite-length sig-
nals, theory and design of two-channel filter banks are ma-
ture and well documented subjects of digital signal process-
ing [1], [2]. However, in a variety of applications, process-
ing of finite-length signals is required. Image processing
and image coding are prime examples. For perfect recon-
struction filter banks with linear-phase analysis and synthe-
sis filters the symmetric extension method is an established
solution [3], [4], [5]. Since symmetry and orthogonality of
the prototype filters for two-channel paraunitary FIR filter
banks are incompatible, circular extension is often applied.
However, discontinuities at the signal boundaries introduce
artificial high frequency components and degrade coding
performance [6]. Alternative signal extension methods, e.g.,
zero-padding or edge-value replication lead to distortion at
the signal boundaries or introduce redundancy [6].

In [7] and [8] orthogonal time-varying filter banks were
introduced. Orthogonal boundary filters were constructed
to apply paraunitary FIR filter banks to one-sided and finite-
length signals without introducing redundancy or distortion.
Time-varying filter banks were also constructed in [9] but
orthogonality of the boundary regions was not preserved.
Optimal orthogonal boundary filter banks with respect to
coding gain were presented in [10]. The singular value de-
composition (SVD) was employed for construction of op-
timal boundary filters for given second-order statistics in

[11]. In [12] and [13] orthogonal boundary filters which
are optimal in the weighted mean square error (MSE) sense
in the Fourier domain were constructed based on a modifi-
cation of the orthogonal Procrustes problem. Simultaneous
optimization of boundary filters and stationary filters was
considered in [14].

The scope of this paper is the design of orthogonal
boundary filters without DC leakage, i.e., the boundary
highpass filters have at least a single zero atz = 1. This
design constraint is of particular interest for coding applica-
tions since DC leakage significantly degrades coding perfor-
mance. The design procedure is an extension of the method
presented in [13] and employs Householder transformation
of boundary filter matrices.

The outline of the paper is as follows. In section 2,
construction of boundary filters for two-channel paraunitary
FIR filter banks is reviewed. The design of boundary filters
which are optimal in the weighted MSE sense in the Fourier
domain is outlined in section 3. In section 4, the proposed
design procedure for boundary filters without DC leakage is
presented.

The following notation is used in the paper. Boldfaced
quantities denote matrices or column vectors. Row vectors
are denoted as transposed column vectors. The row and
column indices of matrices and vectors are counted from
zero. The quantitiesA0;A00 andAT denote the real part,
the imaginary part, and the transpose ofA, respectively.
ON�M denotes theN � M zero matrix andIN denotes
theN �N identity matrix.

2. CONSTRUCTION OF BOUNDARY FILTERS

For the sequel, leth0 = [h(N � 1); h(N � 2); :::; h(0)]T 2
RN denote the reversed lowpass analysis filter impulse
response vector of a causal two-channel paraunitary FIR
filter bank. The corresponding reversed highpass anal-
ysis filter impulse response vector is given byh1 =
[h(0);�h(1); :::;�h(N � 1)]T [15]. Note thatN = 2M ,
h(N � 1) 6= 0, andhT0 h0 = h

T
1 h1 = 1 hold. For construc-

tion of boundary filters the(N � 2) � (N � 2) triangular



block matrices

A0 =

2
664
H0 H1 � � � HM�2

H0 � � � HM�3

� � �
H0

3
775 (1)

A1 =

2
664
HM�1

HM�2 HM�1

� � �
H1 H2 � � � HM�1

3
775 (2)

with M = N=2 and

Hm =

�
h(N � 1� 2m) h(N � 2� 2m)
h(2m) �h(2m+ 1)

�
(3)

are employed. From [8] it is known that there exist ex-
actly M � 1 left and right boundary filters each of maxi-
mal lengthN � 2. Canonical sets of boundary filters can
be obtained by downsampling the rows ofA0 andA1, re-
spectively. LetaT0 ; :::;a

T
N�3 denote theN � 2 row vec-

tors ofA1. Then, theM � 1 row vectorsaT1 ;a
T
3 ; :::;a

T
N�3

are linearly independent and orthogonal to the row space
of A0 [13]. Hence, Gram-Schmidt orthogonalization and
subsequent orthonormalization ofaT1 ;a

T
3 ; :::;a

T
N�3 yields

a canonical set of left boundary filters. Correspondingly, let
bT0 ; :::; b

T
N�3 denote theN � 2 row vectors ofA0. Then,

theM � 1 row vectorsbT0 ; b
T
2 ; :::; b

T
N�4 are linearly inde-

pendent and orthogonal to the row space ofA1 [13] and a
canonical set of right boundary filters can be obtained by
Gram-Schmidt orthogonalization and subsequent orthonor-
malization ofbT0 ; b

T
2 ; :::; b

T
N�4.

3. OPTIMIZATION OF BOUNDARY FILTERS

If R0 is a left boundary filter matrix then

B0 = QT
0 P 0 = QT

0

�
Ip0 Op0�(N�2)

O(M�1)�p0 R0

�
(4)

is also a left boundary matrix whereQ0 denotes an(M �
1+ p0)� (M � 1+ p0) orthogonal matrix [8]. Similarly, if
R1 is a right boundary filter matrix then

B1 = QT
1 P 1 = QT

1

�
R1 O(M�1)�p1

Op1�(N�2) Ip1

�
(5)

is also a right boundary filter matrix whereQ1 denotes an
(M � 1+ p1)� (M � 1+ p1) orthogonal matrix [8]. Note
that there areM �1+p0 left boundary filters each of maxi-
mal lengthN�2+p0 andM�1+p1 right boundary filters
each of maximal lengthN � 2+ p1. The objective function
for optimization of the boundary filters will be the weighted

MSE between the frequency responses of the boundary fil-
ters and the corresponding stationary filters. If the numbers
of boundary filtersM�1+p0 andM�1+p1 are restricted
to be even, the corresponding stationary filter matrices are

Si =

2
4 H0 H1 � � � HM�1

� � �
H0 � � � HM�1

3
5 (6)

whereSi 2 R(M�1+pi )�N ; i = 0; 1 holds. With the
Fourier matricesFK�L = [W kl] 0�k�K�1; 0�l�L�1; F =
FN�L; F i = F (N�2+pi)�L; W = exp(�j2�=L),
and the positive definite frequency weight matrixW =
diag(w0; :::; wL�1), the boundary filter optimization prob-
lem can be stated as

min
Q

i

kSiFW �QT
i P iF iW kF (7)

subject to the constraintQT
i Qi = IM�1+pi . GivenT i =

T 0i + j T 00i 2 CK�L , an orthogonal matrixQ 2 RK�K

which minimizes

kT 1 �QTT 2kF (8)

isQ = UV T [13] with the SVD

U�V T = T 02T
0
1
T
+ T 002T

00
1
T
: (9)

The optimal boundary filter matricesBi = QT
i P i are

now readily obtained by settingT 1 = SiFW andT 2 =
P iF iW , respectively.

With the decompositionsB0 = [B00 B01] and
B1 = [B11 B10], Bi0 2 R(M�1+pi )�pi , Bi1 2
R(M�1+pi )�(N�2), the smallest possible orthogonal matrix
is

G =

2
4 B00 B01

A0 A1

B11 B10

3
5 : (10)

Hence, the minimal required signal length isL0 = 2(N �
2)+ p0+ p1. For signal lengthsL > L0, the corresponding
subband decomposition matrix can be readily obtained by
straightforward extension of the block matrix[A0 A1].

Fig. 1 shows optimal length-3 boundary filters based on
minimum-phase length-4 Daubechies filters [2], i.e.,p0 =
p1 = 1. Note that the highpass boundary filters reveal con-
siderable DC leakage. Fig. 2 illustrates orthogonal subband
decomposition of a constant length-16 signal. Note that the
first and last sample of the decimated highpass signal are
not equal to zero as a consequence of DC leakage of the
highpass boundary filters.
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Figure 1: Optimal length-3 boundary filters (solid lines)
based on minimum-phase length-4 Daubechies filters
(dashed lines). The highpass boundary filters reveal con-
siderable DC leakage.

4. BOUNDARY FILTERS WITHOUT DC LEAKAGE

For construction of boundary filters without DC leakage, the
matricesQT

i in (4) and (5) are rewritten as the product of
Householder matricesUT

i = U i and general orthogonal
matricesV T

i , i.e.,

QT
i = UT

i V
T
i : (11)

The matricesV i are determined according to the solution
of the optimal design procedure (7). The Householder ma-
trices [16]

U i = I � 2uiu
T
i (12)

are determined to satisfy the requirement

Sif = UT
i V

T
i P if i (13)

with f = FN�1 andf i = F (N�2+pi)�1. Note thatf i =
[1; 1; :::; 1]T andsi = Sif =

p
2 [1; 0; :::; 1; 0]T hold. This

time domain constraint ensures at least a single zero of the
boundary highpass filters atz = 1. With

bi = V T
i P if i (14)

the unit-norm vectorsui in (12) can be chosen to

ui =
si � bi

ksi � bik2 : (15)

Summarizing, boundary filter matrices without DC leakage
are given by

Bi = (I � 2uiu
T
i )V

T
i P i: (16)
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Figure 2: Orthogonal subband decomposition of a con-
stant length-16 signal using minimum-phase length-4
Daubechies filters along with optimal length-3 boundary fil-
ters.

Fig. 3 shows length-3 boundary filters without DC leak-
age based on minimum-phase length-4 Daubechies filters.
Interestingly, these filters are identically equal to the bound-
ary filters found by numerical means in [17] and applied
for construction of tree-structured signal expansions in [18].
Fig. 4 illustrates orthogonal subband decomposition of a
constant length-16 signal. Note that the decimated high-
pass signal vanishes whereas the decimated lowpass signal
remains almost unchanged compared to Fig. 2.
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Figure 3: Length-3 boundary filters (solid lines) without DC
leakage based on minimum-phase length-4 Daubechies fil-
ters (dashed lines).
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