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ABSTRACT
An intelligent and attractable active contour model for
boundary extraction is presented in this paper.  The proposed
model is capable of driving any initial guess in the area of the
evolving estimate towards the desired boundary, working against
a constant image background, overcoming spurious edge-points
and fitting into the object without any overrun.  It is also capable
of extracting both concave and convex boundaries while still
being capable of bearing subjective boundaries with help of a
synthetic convergent criterion and an adaptable interpolation
scheme.  Using additional two control parameters, it is possible
to control the convergent properties of the new model, which
provides a high degree of flexibility and adaptability.  This
robust model has been applied to real images with encouraging
results.

1. INTRODUCTION

In many applications of image analysis, segmenting structures
from images is an essential step.  The challenge is to extract
boundary elements that belong to the same structure and
integrate these elements into a coherent and consistent model of
structure [1].  Traditional low-level techniques (e.g.
thresholding, region growing [2] and edge detecting [3]) which
only utilize local information can make mistakes during this
integration process and generate erroneous object boundaries.
Alternatively, the active contour model, known as snakes [4],
offers a unique and effective approach to image segmentation by
exploiting (bottom-up) constraints derived from the image data
together with (top-down) a priori knowledge about the location,
size and shape of these structures. It integrates the image feature
extraction and representation phases into a single process.
However, the original snake model suffers from the following
drawbacks:

• The evolution of a snake highly depends on its initial state
(i.e. either position or shape).  If the initial contour is not
close enough to the object, its energy minimization fails.

• It becomes stagnant at some local minima corresponding to
noise in the image due to the inherent tendency to settle into
a nearby local energy minimum [5].

• It lacks the ability to handle concave or convex contours
properly [6].

• The single convergent criterion leads to the snake fail under
certain adverse condition [6][7]

In this paper, a new model, an attractable snake, is proposed to
overcome the above limitations of snake.  Unlike other improved
models, such as the region based model [2], balloon model [5]
and dual snake model [8], which only depend on the specific
geometrical properties of the snake and lack robust automatic
optimization mechanism, our intelligent attractable contour
model is built to directly sense its potential energy variation (i.e.
voltage) of image attributes (e.g. edges) to perform minimization
process automatically from a given initial guess without
restrictive constraints (i.e. position and shape). it can converge to
the desired minima at original snake’s equilibrium without any
overrun.

2. THE CONVENTIONAL SNAKE
MODEL

In general, a deformable contour, snake, is a parametric contour
embedded in the image plane (x, y) ∈ ℜ2.  The contour V(s)
having arc length s as a parameter can be represented as below:

V: Ω = [0, 1] → ℜ2

V(s) = [x(s), y(s)] where s ∈ Ω (1)

Let Ad be a space of admissible deformations.  The shape of the
contour subject to an image I(x, y) can be dictated by its energy
function Esnake as follows:

Esnake : Ad → ℜ

Esnake[V(s)] = ∫Ω{ Eint[V(s)]+ Pimage[V(s)]+ Econst[V(s)]}ds (2)

where Eint[V(s)] represents the internal energy term which
imposes the regularity on the curve by bending and stretching,
given by

where the primes α(s) and β(s) control the mechanical properties
(i.e. elasticity and rigidity) of the model.  Pimage[V(s)] represents
the image potential energy term that attracts the snake toward
salient image attributes, such as lines, edges and subjective
contours.  For edges, it is defined as follows:

Pimage[V(s)] = -γ(s)|∇I[V(s)]|2 (4)

where the prime γ(s) controls the weight of image attraction and
∇I[V(s)] represent the image gradient.  Econst[V(s)] represents the
external constraint energy term that is responsible for guiding the
snake towards the desired local minimum.  It can be defined by
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the user, constructed from physical phenomena [7], or derived
from high-level interpretation [4].

The final shape of the contour corresponds to the minimum of
this energy:

E*
snake= min {Esnake[V(s)]} (5)

The above equation was originally solved by use of techniques of
variational calculus and a Finite Difference Method (FDM) is
applied [4]. Later, it was improved by Cohen [5] using a Finite
Element Method (FEM).

Another solution is found by Amini using dynamic programming
[9] that promotes stability of snakes and hard constraints to be
enclosed at cost of expensive computation.  Nevertheless,
Williams [10] improves this by taking the bold step of searching
in a greedy fashion to found solution for the above energy
minimizing functional (5).  Besides, Lam et al [11] proposed an
alternate searching pattern based on connective characters of four
and four diagonal neighbors of an image point to reduce the
computing time by 30% average.

In this paper we will work on the base of both the greedy
algorithm and the fast greedy algorithm to control snakes
because they reasonably combined speed, flexibility and
simplicity compared to the dynamic programming and the
variational calculus based methods

3.  ATTRACTABLE SNAKE MODEL
Our attractable snake model id defined as follows:

Esnake[V(s)] = ∫Ω{Eint[V(s)]+ Pimage[V(s)]+ Efeedback[V(s)]}ds  (6)

where Eint[V(s)] and Pimage[V(s)] are as given in equations (2)
and (3) respectively.  Efeedback[V(s)] is defined by the following
equation:

Efeedback[V(s)] = - fdb(s)∇Pvoltage[V(s)]n(s)  (14)

where n(s) is a unit vector which represents the direction of
normal to deformable contour in Ad.  Efeedback[V(s)] is designed
to directly reflect the potential energy variation ∇Pvoltage[V(s)] of
image features (i.e. edges).  In fact Pimage[V(s)] of the snake
model serves as a potential field which can attract a snake to
salient image features.  We call this field the image feature
potential energy field, which is similar to a magnetic field.  If the
attraction from the desired image feature is large enough to
overcome the internal mechanical resistance (due to bending and
stretching) of the contour, and with the condition that there is no
external energy influencing, the snake can then be attracted to the
attraction source and adhere to it.  Obviously the deformation
movement of snake depends on the distance between the
deformable contour and the desired image feature.  However, we
do not always know exactly how far from the initial contour this
attraction source is, but it can only adhere to the attraction source
when it is close enough to the object contour.  Concurrently, we
can determine what kind of potential energy the desired feature
should posses from the edge information and what kind of
potential energy the deformable contour has in this field after
being given the initial contour guess (i.e. the potential energy of
every point on the deformable contour and its neighbors).  Based
on these information we are able to construct the above feedback

mechanism about the attraction energy variation to drive the
snake deformation (i.e. expansion or contraction) along its
normal direction, until it fails into the desired image feature.

3.1 Implementation

The following equation is our attractable snake model for a
discrete curve:

Esnake[V(s)] = ∑i [Eint(Vi)+ Pimage(Vi)+ Efeedback(Vi)] (8)

where Eint(Vi), Pimage(Vi) and Efeedback(Vi) are given by equation
(9), (10) and (11) respectively.

Eint(Vi) = α(i)Econt(Vi)+β(i)Ecurv(Vi) (9)

where,

where d is the average curve length and Vi, j are the 8-neighbors
of a point Vi on the curve (i=0, 1, 2,…, n) for j=0, 1, 2, …, 8.

Pimage(Vi) = γ(i)Pfield-norm(Vi) (10)

where,

where Pfield=|∇I(V i)| according to the Greedy algorithm [13].
Pfield-max and Pfield-min are respectively the maximum and minimum
values of Pfield in 8-neighborhood of Vi.

Efeedback(Vi) = -fdb(i)∇Pvoltage(Vi)n(i) (11)

where,

where Pmax and Plevel are respectively the maximum and threshold
level in the potential field of image features.

Efeedback(Vi) is designed to respond to the variation of potential
energy of the snake while it is driven close to the desired contour
and will disappear automatically when the snake reaches the
object.  Hence, the improved model can achieve the equilibrium
of the original snake.  In another words, the new model can reach
the desired local minima without any overrun.  Meanwhile,
Efeedback(Vi) is also designed to respond to the variation of
potential energy of eight neighbors of the snake points while it is
driven close to the desired contour points.  Therefore, our
intelligent model can control the speed of a snake approaching
the desired contour and ensure snake to sense the local shape of
potential field properly (i.e. the snake to be trapped by the
desired contour without overrun), as shown in Fig. 1.
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Figure 1. Movement of the snakes with Efeedback.

Here α(i), β(i) and γ(i) are the same as in original model
whereas fdb(i) is for feedback pulling (for expansion) or
pushing (for contraction) on snakes and is simply chosen
smaller than γ(i) and slightly larger than α(i ) or β(i), or both.
By changing the direction of the n(i), we can control an
effect of shrinking instead of expanding, or vice versa.

The idea of our new model is similar to Cohen’s balloon model
[5].  However, in that model, the normal force was not derived
from object feature potential and only depends on the position of
V(s).  Furthermore, when the balloon reaches an equilibrium, the
points of the snake are slightly outside the real contour since the
image force has to be in equilibrium with the inflation and
regularization forces.

3.2 Construction of Potential Field (Edge Image)

An overall optimal edge detection scheme is employed in order
to promote our snake perform successfully with low contrast and
noisy images.  As shown on Fig. 2, we first split a 2-D Gaussian
smoothing filter into two directions (i.e. x and y), then implement
a smoothing operator with the opposite sequence of Sobel edge
detecting.  In fact, this approach presents stronger edge strength,
more competitive noise suppression, higher efficiency in weaker
edge detection and lower time cost compared to the Canny
detector [3].  We use a 1-D Gaussian filter to enhance the
inherent smoothing result of the Sobel operator in the same
direction rather than a 2-D filter, in order to improve the result of
the Sobel operator, avoid blurring edges and reduce the
computational cost.

Figure 2. The overall optimal edge detection

3.3 Synthetic Convergence Criterion

The original convergence criterion of the greedy algorithm [11]
or the fast greedy algorithm [12] totally depends on the
movement of snake points but does not ensure snakes reach their
equilibrium [5][11][12].  Since we calculate at a discrete point of
the image.  Therefore, it has an inherent numerical instability (i.e.
it oscillates about the equilibrium), if the equilibrium of snake

falls into a non-integer location.  In order to avoid such
instability, we propose a suitable synthetic convergence criterion
based on the following characteristic parameters of snakes
approaching equilibrium:

• After achieving equilibrium, the snake tends to be static.

• The length of contour tends to be a constant.

• Image energy of curve tends to be a constant value.

Fig. 3 illustrate the proposed synthetic convergence criterion.
Unlike other single criterion, such Cohen’s curve displacement
[5], Leymarie’s image energy change [7], or Yung’s CL-
Criterion [6], our convergence criterion allows snakes to either
oscillatingly or normally converge to either a usual contour or a
subjective contour.

Figure 3. The improved convergent criterion

3.4 Adaptable Interpolation Scheme

In addition, a method of dynamic, linear interpolation is
employed to promote snakes to sense the local shape of the
desired contour accurately or to flow into the complicated shape
(i.e. concave or convex contour) of the object contour properly.
To avoid re-parametering after each interpolation and to maintain
the continuity of optimizing iteration, we retain the original
parameter setting at each contour point and give the neighboring
point’s setting to each new contour point.  GAP is the threshold
for average length of the contours and can reflect the basic
geometric property of snake.  Therefore in order to avoid
clustering or even looping we remove those snake points
becoming much closer to its previous point according to GAP
(i.e. when GAP=0, 1, 2) during each interpolation.

4. RESULTS AND CONCLUSION

In order to demonstrate the performance of our proposed model,
results are give in Fig. 4 for the model based on both the greedy
algorithm (top right of (a)-(d)) and the fast greedy algorithm
(bottom right of (a)-(d)) as well.  The images for (a) and (b) are
obtained by digital camera by resolution of 11.29cmx8.47cm,
56.963 pixel/inch.  The image for (c) is an axial spin echo MRI
image of the chest taken during clinical examination using the
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cardiac gating technique.  The slice for (d) is the axial anatomical
spin echo MRI image of heart with interval of 1mm and
0.33mmx0.33mm pixel size. All initial contours are placed
manually and superposed in both original images (top left of (a)-
(d)) and edge images (bottom left of (a)-(d)). All parameters were
set experimentally and shown in Fig. 4.

Our experiments show the four important aspects of our new
model: Firstly, it keeps its traditional properties associated with
original model while it overcomes the limitations of the original
model of being sensitive initial condition and spurious edge
point.  Secondly, it reaches the desired object without any
overrun.  Thirdly it can catch the details of object contour most
correctly.  Finally it makes snakes dealing with concave or
convex contours.  By building a feedback mechanism we achieve
an automatic optimising process. With the help of a new
synthetic convergence criterion the snake can converge both
normally and oscillatingly to the desired contour. With an
adaptable, dynamic linear interpolation scheme we obtain simple
control of topologic property of snake.  However, a suitable
topologic deformation scheme can be used to extend this model
to multi-snakes [1][6].
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Figure 4. Experiment results of our new snake model


