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ABSTRACT

The Gaussian kernel haslong been used in the classical mul-
tiscale analysis. The purpose of the paper is to propose the
uniform B-spline as an alternative for the visual modeling.
A general framework for variousscal e-spacerepresentations
isformulated using the B-spline approach. In particular, the
evolution of thewavel et modelscan bewell understood from
such an approach. Most of the wavelet representations can
befactoredinto B-splinebasesand hence can beimplemented
efficiently using the spline technique. Besides, it is shown
that the B-spline scal e-space representationsnot only inherit
most of the properties of the Gaussian scale-space but also
have many advantages with respect to the efficiency, com-
pactness and parallel structure.

1. INTRODUCTION

Themultiscale representationsof animageareof crucial im-
portance if one aims at describing the structure of the im-
age [5]. Usually the formation of the image is regarded as
the heat diffusion process and hence the Gaussian kernel is
widely usedintheclassical multiscaleanalysis. Moregener-
ally, the multiscale geometry of the image can be described
by the non-linear PDEs. The reason that the Gaussian ker-
nel is popularly used in the classical scale-space theory is
twofold. It wasproved that the Gaussian isthe uniquekernel
which satisfies the causality property as guaranteed by the
scaling theorem [12]. Moreover, the neurophysiological ex-
perimentshave shown that the measured response profilesin
themammalianretinaand visual cortex can bewell-modeled
by the superposition of Gaussian derivatives[13].

In practice, sincethe computational load becomesextremely

heavy when the scal e getslarger, B-spline based techniques
havebeen used for thefast implementation of the scale-space
filtering[6], [7], [8]. Moreover, dueto the nice properties of
the B-splinesfor multiscale analysis[3], most of the current
wavelet models are derived from B-spline kernels. We will
show that these wavelet models have the intrinsic relations
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with the the classical scale-space approach and can be real -
ized more efficiently by using spline technique.

2. B-SPLINE KERNELSAND THEIR PROPERTIES

The central continuous B-spline of order n is denoted by
B™(z), which can be generated by repeated n + 1 convo-
Iution of a B-spline of order 0,
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Thediscrete sampled B-spline b, (k) of order » and integer
coarsenessm > 1 is obtained by directly sampling the nth-

order continuous B-spline at the scale m:
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The discrete B-spline of order n at scale m isdefined as
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where B}, = L[1,1,---,1] isthe sampled pulse of width

m.

One significant property of the B-spline of a given or-
der n isthat it is the unique compactly supported refinable
spline function of order n. which can provide a stable hier-
archical representation of asignal at different scales. It has

been proven [ 3] that acompactly supported splineism-refinable

and stable if and only if it isa shifted B-spline. Let h > 0
and define the polynomial spline space S} consisting of the
dilated and shifted B-splinesof order n (n isodd, which we
will assume throughout the paper) by
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Figure 1. Good approximations of the cubic B-spline (in
dotted line) to the Gaussian kernel (in solid line).

and

U sp=L*(R). (6)
h>0
The embedding property (5) follows from the fact that the
B-spline 8™ (x) ism-refinable, i.e., it satisfies the following
m-scalerelation,

1 n € = n n
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Another property isthat B-splines are good approxima-
tions of the Gaussian kernel dueto the central limit theorem.
In[17] Unser, Aldroubi and Eden have presented amore gen-
eral proof that B-splines convergeto the Gaussian function
in LP(R),Vp € [2,+00) asthe order of the spline n tends
toinfinity. See Fig. 1 for illustration.

3. FAST IMPLEMENTATION OF CONTINUOUS
SCALE-SPACE USING B-SPLINES

The traditional scale-space approach can be regarded as a
continuous wavel et transform of the signal f € L2,

Wi(s,x) = / fObst—2)dt s>0  (8)

where ), (z) = L¢(£) € L? isthe scaled wavelet.

Since spline spaces S}, provide close and stable approx-
imations of L2(R), it is reasonable to approximate both the
discrete signal and the wavelets using B-spline bases. We
use the trandated B-splines of order n, and n» as basesto

approximate both the signal and the wavelets,

flo) = fo) = c(k)B™ (v — k), ©)
k

P(x) = g(k)B™ (¢ — k). (10)
k

Then using the m-refinable property of the B-splines, one
can derivethe cascaded filter bank algorithm for the fast im-
plementation of the continuous wavelet transform at the ra-
tional scales[1]:
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whereT m and | m denotetheup-sampling and down-sampling
operations by afactor m. The computational complexity of
the above algorithm lies in the convolutions with B} and
B2 . From (3) they can befactored asthe repeated convolu-
tions with the impulse of width m and then can be realized
with only addition operations by the moving average tech-
nique with O(N) complexity. Such algorithm give an exten-
sion to the a trous algorithm [19] and the algorithmin [16]
which can only compute the continuous wavel et transforms
at the dyadic scales or integer scales. Finaly, it is also ob-
vious that such an algorithm can be realized parallelly for
different scales.

4. DYADIC SCALE-SPACE FRAME
REPRESENTATIONS

Thederivativesof the Gaussian kernel such asthe Marr-Hildreth

operator [9] and the Canny operator have been widely used
for the multiscale geometric analysis of the image. How-
ever, it has not been clear whether such representations are
invertible. Using B-spline techniques efficient frame algo-
rithms can be designed to express the image in terms of its
mutiscale derivatives. These differential operators include
the gradient operator, the second-derivativeoperator, the Lapla-
cian operator and the multi-directional operator [2].

As an example, we show how to design a LoG-like or
Mexican hat wavelets [9] using B-spline kernels. This rep-
resentation is meaningful because it indicates that an image
can be recovered from its multiscale LoG-like components.
The scaling function is taken asthe radial B-spline ¢(z, y)
which is a non-separable function of two variables defined
by its Fourier transform

~ N

P(wz,wy) = B"(p) (12)

where the radius p = min( Y22 1) and the wavelet is
defined by

P(wa, wy) = p*d(p). (13)

With these definitions we till have afilter bank implemen-
tation of the decompositions due to the refinabl e property of
the scaling function

Sij = SQj—1f * hT2j—1
14
{ Wi f = Sai-1 f x grai— (14)

whereh, g arethe 2D non-separableradial filtersand the cor-
responding transfer functionsare H(p) = cos™**(p/2) and
G(p) = sin®*(p/2). At eachscale, theimageis decomposed
into two components: the smoothing component and theLoG-
likewavelet component. By designing thereconstructionfil-
ter to satisfy the following perfect reconstruction condition

H?(p) + G(p)G(p) =1, (15)



the reconstruction can be obtained as
Soi-1f = Soifxh+Waifxg (16)

where the 2D non-separableradial filter g can be computed
numerically via its Fourier transform G. Also, it is easy to
check that an image can be represented as[1]

Fla,y) =) Wai f % X2 (2, 9) (17)
J

where x»; isthe 2D reconstructionwavel et defined by x(p) =
G"(p)o(p).

5. COMPACT WAVELET MODELS

For image compression applications, compact representation
is preferred. Whereas the scal e-space technique has existed
for along time, it was the orthogonal multiresolution repre-
sentation proposed by S. Mallat [10] that makes the mathe-
matical structure of the image more explicit. Thisisthere-
finement of traditional scale-spacetheory. Thestarting point
isto orthogonalize the B-spline basis, and then decompose
the signal approximated at a fine scale space S7.., into a
coarser scale space S7; by imposing the orthogonal condi-
tion

S = Sy @D Wit (18)
The detailed irregular information of the signal is contained
in the subspace 17,;. After the B-spline basis is converted
into an orthogonal basis, the two-scale relation till exists
which results in an efficient pyramidal algorithm. The per-
fect reconstruction condition different from (15) becomes

|H(2)” +1G(2)]” =1, (19)

Moreover, additional conditions on the filters H, G areim-
posed to ensurethe orthogonality. There are several waysto

achieveacompact multiresol ution by imposing on the biorthog-

onal condition or interpolatory condition. Then the compact
supported Daubechies wavel ets, the interpolatory wavelets,
the bi-orthogonal wavelets can al be derived [20]. We can
show that most of these wavelet models can be derived from
B-splines. A detailed study can befoundin[4], [18]. Based
on such observations, theimplementation of thewavel et trans-
form can be fast realized using the lattice factorization tech-
nique. For example, the transfer function of the compactly
Daubechies wavelets can be factored as

H(z) = (37

where (1£2)N = BJ'(z) is the Nth-order of discrete B-
spline with width 2 which can be realized with only addi-
tion operation. Thetapsof thefilter Py ismuch shorter than
H(z). Other typesof thecompact wavelet transformscan be
treated in asimilar way, which are easy for hardwareimple-
mentations.

) Py (2)

6. DISCUSSON THE PROPERTIES OF B-SPLINE
SCALE-SPACE

Wecanlist afew advantagesof the B-spline scale spaceover
the traditional Gaussian scale-space approach with respect
to the following aspects.

e Efficiency: Themajor weaknessof thetraditional Gaus-
sian based scal e-spaceisthelack of efficient algorithms.
On the contrary, B-spline techniques facilitate com-
putational efficiency. The computational complexity
is scale independent.

e Parallelism: It seemsclear enoughthat visual percep-
tion treats images on several levels of resolution si-
multaneously and that this fact must be important for
the study of perception[5]. Inthis paper, efficient par-
allel structure of animageisexhibited using B-spline
techniques.

e Completenessand invertibility: The zero-crossings
or the local extrema are used as meaningful descrip-
tion of asignal. It is clearly important, therefore, to
characterize in what sense the information in an im-
age or a signal is captured by these primal sketches
uniquely. For a Gaussian based scale space, the com-
pletenessproperty is guaranteed by thefingerprint the-
orem [11]. Later a more general proof which states
that fingerprint theorem holds for any symmetry ker-
nel was proved [14]. Therefore, the fingerprint theo-
remisalsotrueinthecaseof B-splinesfor continuous
scale-space representation.

Differential operators have also been widely used for
multi scal e geometric description of images, but it has
not been clear such representations are invertible. As
shown in the paper, using B-splines, efficient frame
algorithms can be designed to express an image from
itslocal derivatives at dyadic scales.

e Compactness: For compression application, we re-
quire arepresentation to be as compact as possible so
that an image can be represented by the corresponding
primitives using less storage. In the paper, the more
compact dyadic scal e-space representationsisproposed.
We can use such representation for compression appli-
cations by combining with other techniques.

e Causality: A multiscal efeaturedetection method that
does not introduce new features asthe scale increases
is said to possess the property of causality. Such con-
tinuous causality property of the Gaussian kernel is
not shared by the B-spline. However in the discrete
sense, M. Aissen, |. J. Schoenbergand A. Whitney [15]
had given a sufficient and necessary condition on the
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crete scale-space kernel i to guarantee the number of
local extremaor zero-crossingsin fo,¢ = h* fi, does

generating function H(z) =

not exceed thenumber of local extremaor zero-crossings

in f;,. Itiseasy to verify that the discrete B-spline
kernel satisfies such a condition [1]. Therefore, the
causality property till holdsfor discrete B-splinefil-
tering in the discrete sense.

7. SUMMARY

In this paper, we propose the B-spline kernel as an alterna-
tive to the Gaussian kernel for scale-space representations.
Weformulatevariousformsof multiscal erepresentationsus-
ing the B-spline bases. The intrinsic relation between the
wavel et modelsand the classical scale-space approachisex-
hibited. In particular, it is shown that B-splines can be used
for the factorization of the wavelet transforms. As aresullt,
fast implementation of wavelet transforms can be realized.
Thediscussionson the propertiesof the B-spline scale-space
have shown that the B-spline kernelshave many advantages
over thetraditional Gaussian kernel and arewell suitablefor
multiscale visual modeling.
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