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ABSTRACT

The Gaussian kernel has long been used in the classical mul-
tiscale analysis. The purpose of the paper is to propose the
uniform B-spline as an alternative for the visual modeling.
A general framework for various scale-space representations
is formulated using theB-spline approach. In particular, the
evolution of the wavelet models can be well understood from
such an approach. Most of the wavelet representations can
be factored intoB-spline bases and hence can be implemented
efficiently using the spline technique. Besides, it is shown
that theB-spline scale-space representations not only inherit
most of the properties of the Gaussian scale-space but also
have many advantages with respect to the efficiency, com-
pactness and parallel structure.

1. INTRODUCTION

The multiscale representations of an image are of crucial im-
portance if one aims at describing the structure of the im-
age [5]. Usually the formation of the image is regarded as
the heat diffusion process and hence the Gaussian kernel is
widely used in the classical multiscale analysis. More gener-
ally, the multiscale geometry of the image can be described
by the non-linear PDEs. The reason that the Gaussian ker-
nel is popularly used in the classical scale-space theory is
twofold. It was proved that the Gaussian is the unique kernel
which satisfies the causality property as guaranteed by the
scaling theorem [12]. Moreover, the neurophysiological ex-
periments have shown that the measured response profiles in
the mammalian retina and visual cortex can be well-modeled
by the superposition of Gaussian derivatives [13].

In practice, since the computational load becomes extremely
heavy when the scale gets larger,B-spline based techniques
have been used for the fast implementation of the scale-space
filtering [6], [7], [8]. Moreover, due to the nice properties of
theB-splines for multiscale analysis [3], most of the current
wavelet models are derived from B-spline kernels. We will
show that these wavelet models have the intrinsic relations
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with the the classical scale-space approach and can be real-
ized more efficiently by using spline technique.

2. B-SPLINE KERNELS AND THEIR PROPERTIES

The central continuous B-spline of order n is denoted by
�n(x), which can be generated by repeated n + 1 convo-
lution of a B-spline of order 0,

�n(x) = �0 � �n�1(x) =
n+1z }| {

�0 � �0 � � � � � �0(x); x 2 R:
(1)

The discrete sampledB-spline bnm(k) of order n and integer
coarseness m � 1 is obtained by directly sampling the nth-
order continuousB-spline at the scale m:

bnm(k) =
1

m
�n(

k

m
) 8k 2 Z: (2)

The discrete B-spline of order n at scale m is defined as

Bn
m =

n+1z }| {
B0
m �B0

m � � � �B0
m; (3)

where B0
m = 1

m
[1; 1; � � � ; 1] is the sampled pulse of width

m.
One significant property of the B-spline of a given or-

der n is that it is the unique compactly supported refinable
spline function of order n which can provide a stable hier-
archical representation of a signal at different scales. It has
been proven [3] that a compactly supported spline ism-refinable
and stable if and only if it is a shifted B-spline. Let h > 0
and define the polynomial spline space Snh consisting of the
dilated and shiftedB-splines of order n (n is odd, which we
will assume throughout the paper) by

Snh =

(
+1X

k=�1

cm(k)�nh (x� hk) : cm 2 l2
)
: (4)

Then
Snim � Snm; 8i 2 Z+; (5)



 A comparison of Gaussian and cubic B−spline
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Figure 1: Good approximations of the cubic B-spline (in
dotted line) to the Gaussian kernel (in solid line).

and [
h>0

Snh = L2(R): (6)

The embedding property (5) follows from the fact that the
B-spline �n(x) ism-refinable, i.e., it satisfies the following
m-scale relation,

1

m
�n(

x

m
) =

+1X
k=�1

Bn
m(k)�n(x� k): (7)

Another property is that B-splines are good approxima-
tions of the Gaussian kernel due to the central limit theorem.
In [17] Unser, Aldroubi and Eden have presented a more gen-
eral proof that B-splines converge to the Gaussian function
in Lp(R);8p 2 [2;+1) as the order of the spline n tends
to infinity. See Fig. 1 for illustration.

3. FAST IMPLEMENTATION OF CONTINUOUS
SCALE-SPACE USING B-SPLINES

The traditional scale-space approach can be regarded as a
continuous wavelet transform of the signal f 2 L2,

Wf(s; x) =

Z
f(t) s(t� x)dt s > 0 (8)

where  s(x) = 1

s
 (x

s
) 2 L2 is the scaled wavelet.

Since spline spaces Snm provide close and stable approx-
imations of L2(R), it is reasonable to approximate both the
discrete signal and the wavelets using B-spline bases. We
use the translated B-splines of order n1 and n2 as bases to
approximate both the signal and the wavelets,

f(x) � ~f(x) =
X
k

c(k)�n1(x� k); (9)

 (x) =
X
k

g(k)�n2(x� k): (10)

Then using the m-refinable property of the B-splines, one
can derive the cascaded filter bank algorithm for the fast im-
plementation of the continuous wavelet transform at the ra-
tional scales [1]:

Wf(
m1

m2

; r) = m2(b
n1+n2+1�Bn1

m2
�Bn2

m1
�c"m2

�g"m1
)#m2

(r):

(11)

where " m and # m denote the up-sampling and down-sampling
operations by a factor m. The computational complexity of
the above algorithm lies in the convolutions with Bn1

m2
and

Bn2
m1

. From (3) they can be factored as the repeated convolu-
tions with the impulse of width m and then can be realized
with only addition operations by the moving average tech-
nique with O(N) complexity. Such algorithm give an exten-
sion to the �a trous algorithm [19] and the algorithm in [16]
which can only compute the continuous wavelet transforms
at the dyadic scales or integer scales. Finally, it is also ob-
vious that such an algorithm can be realized parallelly for
different scales.

4. DYADIC SCALE-SPACE FRAME
REPRESENTATIONS

The derivatives of the Gaussian kernel such as the Marr-Hildreth
operator [9] and the Canny operator have been widely used
for the multiscale geometric analysis of the image. How-
ever, it has not been clear whether such representations are
invertible. Using B-spline techniques efficient frame algo-
rithms can be designed to express the image in terms of its
mutiscale derivatives. These differential operators include
the gradient operator, the second-derivativeoperator, the Lapla-
cian operator and the multi-directional operator [2].

As an example, we show how to design a LoG-like or
Mexican hat wavelets [9] using B-spline kernels. This rep-
resentation is meaningful because it indicates that an image
can be recovered from its multiscale LoG-like components.
The scaling function is taken as the radial B-spline �(x; y)
which is a non-separable function of two variables defined
by its Fourier transform

�̂(!x; !y) = �̂n(�) (12)

where the radius � = min(

p
!2x+!

2
y

2
; �
2
) and the wavelet is

defined by
 ̂(!x; !y) = �2�̂(�): (13)

With these definitions we still have a filter bank implemen-
tation of the decompositions due to the refinable property of
the scaling function�

S2jf = S2j�1f � h"2j�1
W2jf = S2j�1f � g"2j�1 (14)

whereh; g are the 2D non-separable radial filters and the cor-
responding transfer functions areH(�) = cosn+1(�=2) and
G(�) = sin2(�=2). At each scale, the image is decomposed
into two components: the smoothing component and the LoG-
like wavelet component. By designing the reconstruction fil-
ter to satisfy the following perfect reconstruction condition

H2(�) +G(�) ~G(�) = 1; (15)



the reconstruction can be obtained as

S2j�1f = S2jf � h+W2jf � ~g (16)

where the 2D non-separable radial filter ~g can be computed
numerically via its Fourier transform ~G. Also, it is easy to
check that an image can be represented as [1]

f(x; y) =
X
j

W2jf � �2j (x; y) (17)

where�2j is the 2D reconstructionwavelet defined by �̂(�) =
~Gr(�)�̂(�).

5. COMPACT WAVELET MODELS

For image compression applications, compact representation
is preferred. Whereas the scale-space technique has existed
for a long time, it was the orthogonal multiresolution repre-
sentation proposed by S. Mallat [10] that makes the mathe-
matical structure of the image more explicit. This is the re-
finement of traditional scale-space theory. The starting point
is to orthogonalize the B-spline basis, and then decompose
the signal approximated at a fine scale space Sn

2i+1
into a

coarser scale space Sn
2i

by imposing the orthogonal condi-
tion

Sn
2i+1

= Sn
2i

M
Wn
2i
: (18)

The detailed irregular information of the signal is contained
in the subspace Wn

2i
. After the B-spline basis is converted

into an orthogonal basis, the two-scale relation still exists
which results in an efficient pyramidal algorithm. The per-
fect reconstruction condition different from (15) becomes

jH(z)j2 + jG(z)j2 = 1; (19)

Moreover, additional conditions on the filters H;G are im-
posed to ensure the orthogonality. There are several ways to
achieve a compact multiresolution by imposing on the biorthog-
onal condition or interpolatory condition. Then the compact
supported Daubechies wavelets, the interpolatory wavelets,
the bi-orthogonal wavelets can all be derived [20]. We can
show that most of these wavelet models can be derived from
B-splines. A detailed study can be found in [4], [18]. Based
on such observations, the implementation of the wavelet trans-
form can be fast realized using the lattice factorization tech-
nique. For example, the transfer function of the compactly
Daubechies wavelets can be factored as

H(z) = (
1 + z

2
)NPN (z)

where ( 1+z
2

)N = BN
2 (z) is the N th-order of discrete B-

spline with width 2 which can be realized with only addi-
tion operation. The taps of the filter PN is much shorter than
H(z). Other types of the compact wavelet transforms can be
treated in a similar way, which are easy for hardware imple-
mentations.

6. DISCUSS ON THE PROPERTIES OF B-SPLINE
SCALE-SPACE

We can list a few advantages of theB-spline scale space over
the traditional Gaussian scale-space approach with respect
to the following aspects.

� Efficiency: The major weakness of the traditional Gaus-
sian based scale-space is the lack of efficient algorithms.
On the contrary, B-spline techniques facilitate com-
putational efficiency. The computational complexity
is scale independent.

� Parallelism: It seems clear enough that visual percep-
tion treats images on several levels of resolution si-
multaneously and that this fact must be important for
the study of perception [5]. In this paper, efficient par-
allel structure of an image is exhibited usingB-spline
techniques.

� Completeness and invertibility: The zero-crossings
or the local extrema are used as meaningful descrip-
tion of a signal. It is clearly important, therefore, to
characterize in what sense the information in an im-
age or a signal is captured by these primal sketches
uniquely. For a Gaussian based scale space, the com-
pleteness property is guaranteed by the fingerprint the-
orem [11]. Later a more general proof which states
that fingerprint theorem holds for any symmetry ker-
nel was proved [14]. Therefore, the fingerprint theo-
rem is also true in the case ofB-splines for continuous
scale-space representation.

Differential operators have also been widely used for
multiscale geometric description of images, but it has
not been clear such representations are invertible. As
shown in the paper, using B-splines, efficient frame
algorithms can be designed to express an image from
its local derivatives at dyadic scales.

� Compactness: For compression application, we re-
quire a representation to be as compact as possible so
that an image can be represented by the corresponding
primitives using less storage. In the paper, the more
compact dyadic scale-space representations is proposed.
We can use such representation for compression appli-
cations by combining with other techniques.

� Causality: A multiscale feature detection method that
does not introduce new features as the scale increases
is said to possess the property of causality. Such con-
tinuous causality property of the Gaussian kernel is
not shared by the B-spline. However in the discrete
sense, M. Aissen, I. J. Schoenberg and A. Whitney [15]
had given a sufficient and necessary condition on the



generating function H(z) =
1P

n=�1

h(n)zn of a dis-

crete scale-space kernel h to guarantee the number of
local extrema or zero-crossings in fout = h�fin does
not exceed the number of local extrema or zero-crossings
in fin. It is easy to verify that the discrete B-spline
kernel satisfies such a condition [1]. Therefore, the
causality property still holds for discrete B-spline fil-
tering in the discrete sense.

7. SUMMARY

In this paper, we propose the B-spline kernel as an alterna-
tive to the Gaussian kernel for scale-space representations.
We formulate various forms of multiscale representations us-
ing the B-spline bases. The intrinsic relation between the
wavelet models and the classical scale-space approach is ex-
hibited. In particular, it is shown thatB-splines can be used
for the factorization of the wavelet transforms. As a result,
fast implementation of wavelet transforms can be realized.
The discussions on the properties of theB-spline scale-space
have shown that theB-spline kernels have many advantages
over the traditional Gaussian kernel and are well suitable for
multiscale visual modeling.
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