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ABSTRACT

We present maximum likelihood (ML) methods for active
estimation of range (time delay), velocity (Doppler shift),
and direction of a point target with a radar array in spa-
tially correlated noise with unknown covariance. We con-
sider structured and unstructured array response models
and compute the Cram�er-Rao bound (CRB) for the time
delay, Doppler shift, and direction of arrival. We derive
ambiguity functions for the above models and discuss the re-
lationship between identi�ability, ambiguity, and the Fisher
information matrix.

1. INTRODUCTION

In active radar, a known waveform is transmitted and the
signal reected from the target of interest is used to esti-
mate its parameters. Typically, the received signal is mod-
eled as a scaled, delayed, and Doppler-shifted version of
the transmitted signal, see [1] for the standard model of a
slowly uctuating point target. Estimating the time delay
and Doppler shift provides information about the position
and relative motion of the target: the maximum likelihood
(ML) procedure for the case of a single receiving antenna
was derived in [1, Chapters 9 and 10]. However, recent ad-
vances in radar signal processing are associated with the
use of antenna arrays.
Using a sensor array allows estimation of the target's di-

rection and guarantees higher accuracy of range and veloc-
ity estimation. In this paper, we extend the slowly uctuat-
ing point target model of [1] to account for multiple sensors,
where the noise is correlated between sensors with unknown
covariance. We consider both structured and unstructured
array response models, also used in [2]. However, unlike [2]
or [3], we use an arbitrary signal waveform, which allows
for precise range estimation and waveform design. We de-
velop ML estimation procedures for this model and derive
estimation accuracy measures.
In Section 2, we introduce the array models (structured

and unstructured) as well as noise model. In Section 3, we
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present the ML estimation procedures. For the structured
array we estimate the target's direction of arrival (DOA),
Doppler shift, and time delay. For the unstructured array,
we derive ML estimates of the Doppler shift and time delay
(since DOA estimation is not possible in this case). These
estimates are more robust compared with the structured
model, which is sensitive to errors in the array response
model.
In Section 4, we compute the Cram�er-Rao bound (CRB)

for the DOA, Doppler shift, and time delay for the struc-
tured model. We show that the CRB for the Doppler shift
and time delay under the unstructured model equals the
corresponding CRB for the structured model, i.e. the struc-
tured and unstructured array ML methods are asymptot-
ically equivalent for these parameters. Thus, when only
range and velocity estimation are of interest, using the un-
structured ML method has an advantage since it is robust,
while guaranteeing the same asymptotic accuracy as the
structured ML.
In Section 5, we derive ambiguity functions for the struc-

tured and unstructured array models and show how they
relate to the Woodward's ambiguity function [1] used in
radar processing with a single antenna. We discuss the con-
nections between ambiguity, parameter identi�ability, and
the Fisher information matrix.

2. MODELS

Suppose an m-element antenna array receives a scaled,
time delayed, and Doppler-shifted echo of a known com-
plex bandpass signal s(t) exp(j!ct). Knowing the time de-
lay � and Doppler shift !D, the target's range � and radial
component of velocity v are determined by � � c�=2 and
v � c!D=(2!c), see e.g. [1, Section 9.1].
In Sections 2.1 and 2.2 we describe the structured and

unstructured array response models as well as noise model
used to derive the ML estimation procedures and accuracy
measures.

2.1. Structured Array Model

In the structured array model, a given model is assumed
for the m � 1 array response vector a(�) to a plane wave
reected from the target. Here, � contains DOA parameters



(and may contain additional parameters, such as scattering
and polarization coe�cients).
Converting to base-band, the signal received by the array

becomes

y(t) = a(�) � x � exp[j!Dt]s(t� � ) + e(t); (2.1)

where t = 1; : : : ; N and x, � , and !D are the complex am-
plitude, time delay, and Doppler shift, respectively. Note
that we have assumed that the signal bandwidth and an-
tenna locations are such that the time delay � and direc-
tion of arrival � are common to the whole array. Equation
(2.1) generalizes the slowly uctuating target model in [1,
Chapters 9 and 10] to account for multiple sensors, thus en-
abling DOA estimation. A special case of the above model
is used in [2], [3] where s(t) � 1 over the whole \range gate"
t = 1; 2; : : : ; N . However, such a model does not allow esti-
mation of the time delay � , so the range resolution can be
no better than the width of the range gate. Further, our
model extends a variety of signal waveform models used in
conventional (one-antenna) radar signal processing (see e.g.
[1]) to multiple sensors.
The noise term e(t) models interference due to clutter,

receiver noise, and jamming. When the noise is dominated
by clutter, e(t) is usually both temporally and spatially cor-
related. Target-free (passive) measurements may be used to
temporally pre-whiten the data. Throughout this paper we
assume that e(t) is Gaussian, temporally uncorrelated and
spatially correlated with unknown positive de�nite covari-
ance � ; thus the data has been temporally pre-whitened, if
necessary. The same noise model is used in [2], [3].
De�ne � = [!D; � ]

T . The vector of unknown target pa-
rameters is then � = [Refxg; Imfxg; �T ;�T ]T . De�ne also
�(t;�) = a(�)x exp[j!Dt]s(t� �), which is the noiseless ar-
ray response at time t for the structured model. Observe
that the dependence of �(t;�) on � and � is nonlinear.
Thus, the estimation algorithm for the structured model
requires a nonlinear search over the parameter space of di-
mension dim(�) + 2.

2.2. Unstructured Array Model

We describe the unstructured array response model in
which the whole array response vector (also known as \spa-
tial signature") is assumed to be unknown [2], [4]. This
model is robust compared with an incorrectly structured
array model. Also, the parametrization in (2.1) involves
the nonlinear dependence of the data model on �, necessi-
tating a multi-dimensional search, see the previous section.
These problems can be overcome by using an unstruc-

tured model. Estimation using this model is robust and
requires only a 2-D search, but does not provide an esti-
mate of the DOA parameter vector �, i.e. the DOA resolu-
tion can be no better than the width of the transmit beam.
This model can be written as:

y(t) = a exp[j!Dt]s(t� � ) + e(t); t = 1; : : : ; N; (2.2)

with the same noise assumptions as for the structured model
in the previous section. Thus, a(�) � x in the structured
array model is simply substituted by an unstructured array
response a. The vector of unknown target parameters for
this model is �

u
= [RefagT ; ImfagT ;�T ]T . The noiseless

array response for this unstructured model at time t is then
�
u
(t;�

u
) = a exp[j!Dt]s(t� �).

3. MAXIMUM LIKELIHOOD ESTIMATION

In this section we present the ML estimation procedures
for the structured and unstructured models. They can be
easily derived using the results in [4], [5], see [6].

3.1. Estimation with Structured Array

The concentrated likelihood function for the unstructured
array model is [6]

ls(�;�) = 1+
1

N

jz(�)� bR�1a(�)j2
a(�)� bR�1a(�) � [b(� )� 1

N
z(�)� bR�1z(�)] ;

(3.1)

where z(�) =
P

N

t=1
y(t)s(t � � )� exp[�j!Dt], b(�) =P

N

t=1
js(t � � )j2, and bR =

P
N

t=1
y(t)y(t)�=N . If s(t) � 1

then z(�) becomes the discrete Fourier transform (DFT)
of y(t) and the concentrated likelihood in (3.1) reduces to
the expression in [2, equation (16)], [3, equation (19)]. As
commented earlier, under this assumption, the time delay
� cannot be estimated.
In the following, we present conditions for equivalence

between the discrete-time (see above) and continuous-time
processing of radar signals, widely used in radar literature
[1]. Continuous-time results are often easier to interpret, at
the cost of neglecting the �nite sampling e�ects.

Assumption A. The reected signal s(t � � ) is completely
received within the \range gate" i.e. t = 1; 2; : : : ; N ,
and the sampling is dense, i.e. N ! 1 but the dura-
tion of the range gate is �xed.

Under Assumption A, it follows that b(�) �
R
1

�1
js(t)j2dt

which is the energy of s(t) and does not depend on � .
Also, the summation in z(�) can be replaced by an in-
tegral which then makes z(�) equal to to the short-time
Fourier transform (STFT) [7, p. 94] of y(t) with a slid-
ing window s(t) and parameters � and !D. Interestingly,
for wideband Doppler, the received signal is of the form
�(t;�) = s((t � �)=�), and thus the integral form of z(�)
reduces to the continuous wavelet transform (CWT) of y(t).

3.2. Estimation with Unstructured Array

The concentrated likelihood function for the unstructured
array can easily be obtained by maximizing ls(�;�) in
(3.1) with respect to an arbitrary a(�) using the Cauchy-
Schwartz inequality. The concentrated likelihood function
simpli�es to

lu(�) =
z(�)� bR�1z(�)

b(�)
: (3.2)

Under Assumption A, the denominator of the above ex-
pression is equal to the signal energy and, therefore, inde-
pendent of � . Further, the term in the numerator can be
interpreted as a weighted matched �lter and reduces, for
one sensor, to the spectrogram, i.e. squared magnitude of
the STFT [7, p. 95]. Thus, the expression in (3.2) can be
viewed as a multivariate extension of the spectrogram.



4. CRAM�ER-RAO BOUND

In [6] we derive the Cram�er-Rao bounds for � (i.e. the time
delay and Doppler shift) and show that they are equal for
the unstructured and structured array models. Under the
structured model, we further derive the CRB for the DOA
parameters � and show that the bounds on � and � are
uncoupled.

4.1. Structured Array

In [6] we derive the CRB for � and �:

CRB�� =
1

2b(�)jxj2

h
Re

n
Da(�)

�
�
�
1

2�
?(�)��

1

2Da(�)

oi�1
;

CRB�� = 0;

CRB�� =
b(�)

2jxj2a(�)���1a(�)
�

h
�(�) ��(�)
��(�) �(�)

i�1
;

where

�
?(�) = I �

1

a(�)���1a(�)
�
�
1

2a(�)a(�)���
1

2 ; (4.1a)

�(� ) = b(�)b2(�)� b1(�)
2; (4.1b)

�(� ) = b(�)l(�)� jc(�)j2; (4.1c)

�(� ) = b(�) Im
�
c1(�)

	
� b1(�) Imfc(�)g; (4.1d)

and b1(�) =
P

N

t=1
tjs(t � �)j2, b2(�) =

P
N

t=1
t2js(t � �)j2,

c(�) =
P

N

t=1
s(t��)�d(t��), c1(�) =

P
N

t=1
ts(t��)�d(t�

� ), l(�) =
P

N

t=1
jd(t � �)j2, d(t) = ds(t)=dt, Da(�) =

@a(�)=@�T . Note that the above CRB expressions do not
depend on the Doppler frequency !D. Thus, the estima-
tion accuracy of the target parameters is independent of
the Doppler shift.
The CRB for � and � is block-diagonal. Hence, CRB��

remains the same regardless of whether or not � is known.
Also, under Assumption A, CRB�� depends neither on �

(since b(� ) = b) nor on the signal shape: it is just inversely
proportional to the received signal energy b � jxj2.
The CRB�� matrix depends on the array response a(�)

only through the term a(�)���1a(�) via an inversely pro-
portional relation. Furthermore, for spatially white noise
(i.e. � = �2 I ) we have that a(�)���1a(�) = m=�2.
This implies that the bound on asymptotic accuracy of the
Doppler shift and time delay is proportional to 1=m, where
m is the number of antennas. Therefore, if the noise is spa-
tially white, the accuracy of the Doppler shift and time de-
lay estimation does not depend on the array con�guration,
and the CRB�� above can be achieved by merely averaging
the single-sensor ML estimates over all sensors.
Under Assumption A, the CRB�� is independent of the

time delay � , as shown in [6]. Also, � and � in equations
(4.1b) and (4.1c) become proportional to the e�ective dura-
tion and e�ective bandwidth of s(t), respectively, as de�ned
in [8, equations (1.21) and (1.22)]. For normalized signal
energy (i.e. b = 1), these de�nitions are the same as those
in [7, Sections 1.2 and 1.3]. Also, � can be viewed as the
covariance of a signal, i.e. a measure of how time is corre-
lated with the instantaneous frequency, see also [7, equation
(1.124)].

4.2. Unstructured Array

In [6] we prove that, for the unstructured model

CRB�� =
b(�)

2a���1a
�

�
�(�) ��(�)
��(� ) �(� )

��1
; (4.2)

which is equal to the expression in equation (4.1) after sub-
stituting a(�) �x by a. Thus, the bound on accuracy of the
Doppler shift and time delay is the same for both the struc-
tured and unstructured array model (i.e. the structured and
unstructured ML estimation procedures are asymptotically
equally e�cient for these parameters), which is an exten-
sion of the result in [2] for the bound on accuracy of Doppler
shift estimation and signal model s(t) = 1. Therefore, the
unstructured ML method should be used to estimate the
Doppler shift and time delay due to its robustness to mod-
eling inaccuracies compared with the structured ML, see
also Sections 2.1 and 2.2.

We use the CRB expressions presented in Sections 4.1
and 4.2 for optimizing the radar system parameters, e.g.
the sensor locations and signal waveform, see [6].

5. GLOBAL ACCURACY, AMBIGUITY AND
FISHER INFORMATION

In this section we discuss global accuracy as characterized
by ambiguity functions, and relations to identi�ability and
Fisher information. Unlike the FIM, which is a local mea-
sure of estimation accuracy, the ambiguity function is used
to assess the global resolution and large error properties of
the estimates [1]. We derive ambiguity functions for the
sensor array models discussed in this paper using a gener-
alized ambiguity function in [9].

5.1. Woodward's Ambiguity Function

In a single-antenna radar system, the system parameters
reduce to the signal waveform, which should be chosen to
attain good resolution of range (time delay) and velocity
(Doppler shift).

Assume that we have two targets with parameters � =
[!D; � ]

T and �
0
= [!D0; �0]

T . The standard ambiguity func-
tion for a single antenna is [1, p. 279]: j

R
1

�1
s(t� ��

2
)s(t+

��

2
)� exp(j�!Dt)dtj

2, where �� = ���0 and �!D = !D�!D0
denote shifts in time and angular frequency between the two
targets, respectively. It is a measure of the degree of simi-
larity between the complex envelope and its replica which
is shifted in time and frequency. Its main use is to measure
the range-velocity resolution attainable for a given wave-
form, see below. The above expression is sometimes re-
ferred to as Woodward's ambiguity function because of his
pioneering work in [10].

Suppose that the ambiguity function has an e�ective
width of �� = [��;�!D]. This roughly means that two
point targets spread by less than c��=2 in range and less
than c�!D=(2!c) in radial velocity cannot be distinguished
by the radar. Two such targets are said to be ambiguous;
hence the name ambiguity function.



5.2. Sensor Array Ambiguity Functions

We start by de�ning a distance measure between two multi-
variate Gaussian distributions. Then, we use this measure
to derive a generalized ambiguity function, following the
de�nition in [9].
For the structured array we use the following measure of

separation between the probability density functions of the
measurements corresponding to two targets with parame-
ters �

0
and � (assuming �xed covariance �):

d(�;�
0
) =

NX
t=1

[�(�; t)� �(�
0
; t)]���1[�(�; t)� �(�

0
; t)]:

(5.1)
The corresponding distance measure for the unstructured
model follows by replacing �, �, and �

0
in the above equa-

tion by �
u
, �

u
and �

u0
= [Refa0g

T ; Imfa0g
T ;�

0

T ]T , re-
spectively.
The measure in (5.1) is by de�nition the square of the

Mahalanobis distance; it is also the Kullback-directed di-
vergence, used in [9]. Additionally, the identi�ability by
distribution of the target parameters � reduces to the fol-
lowing requirement: d(�;�

0
) = 0 if and only if � = �

0
.

As observed earlier, both the structured and unstruc-
tured model are special cases of the general model in [6].
Thus, in [6] we �rst consider the ambiguity function for that
general model, and then derive the special cases. We use
the ambiguity function with nuisance parameters, see [9,
De�nition 2].
For the unstructured array, the nuisance parameter vec-

tor is a and the ambiguity function follows [6]

A(�;�
0
) =

1

b(�)b(�0)

��� NX
t=1

s(t��0)s(t��)� exp(�j(!D�!D0)t)

���2:
Again, under Assumption A in Section 3.1, b(�) = b(�0) =
constant and the above summation can be substituted by
a corresponding integral. Then, the above expression be-
comes proportional to the Woodward's ambiguity function
in the previous section. Thus, signal analysis based on the
ambiguity in e.g. [1, Chapter 10] is directly applicable to
the unstructured array model.
Next, we present the ambiguity function for the struc-

tured array model (where the nuisance parameter is x):

A([�T ; �T ]T ; [�T0 ;�
T

0
]T ) =

=
ja(�0)

���1a(�)j2

a(�0)���1a(�0) � a(�)���1a(�)
� A(�;�

0
);

see [6]. This ambiguity function is a measure of DOA-range-
velocity resolution attainable for a given sensor array con-
�guration and signal waveform. Observe the separation be-
tween the DOA and range-velocity parameters in the above
expression: this is consistent with the local accuracy result
in Section 4.1 stating that the CRB for the DOA and range-
velocity parameters is block-diagonal. If we also choose �
to be a nuisance parameter, then the ambiguity function
reduces to A(�;�

0
).

Local behavior of the distance measure d(�;�
0
) is of in-

terest: it is desirable to have good resolution when the
target parameters are close, i.e. � = �

0
+ ��. Then, the

distance measure d(�;�
0
) and the Fisher information ma-

trix of the source parameters � (or �
u
for the unstruc-

tured model) are related by the following simple formula:
d(�

0
+ ��;�

0
) � 1

2
��TI��.

6. CONCLUDING REMARKS

We developed ML methods for estimating the range, ve-
locity, and direction of arrival of a moving target by radar
arrays where the noise was assumed to be temporally uncor-
related and spatially correlated with unknown covariance.
Two array models were used: structured and unstructured.
We derived Cram�er-Rao bounds for the unknown target pa-
rameters. Finally, we derived ambiguity functions for the
array models and showed how they relate to Woodward's
(single-antenna) ambiguity function.
In [6] we apply the derived bounds to optimal design of

system parameters, i.e. sensor array con�guration and sig-
nal shape. We derive a criterion for optimizing the accuracy
of the target parameters.
Further research will include developing the ML method

and accuracy measures for a wideband signal model with
radar or sonar sensor arrays. Passive estimation of moving
sources will also be considered.
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