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ABSTRACT

Over the past several years, there have been various proposals for
communication with chaotic signals. But the issue of compensat-
ing the distortions introduced by the physical channel like noise,
time varying fading and multi-path has not been fully addressed.
In this paper, we first describe a noise reduction method for chaotic
signals corrupted by an additive noise. The method uses the phe-
nomenon of chaos synchronization to approximate the maximum
likelihood (ML) decoder for the AWGN channel. Further we use
the synchronizing receiver to nullify slowly time varying fading
and multi-path. We find the region of operation for such a receiver
and show how the time varying parameters characterizing such
channels can be tracked at the receiver.

1. INTRODUCTION

Communicating with chaotic signals has been an active area of
research for the past several years [1, 2, 3]. The retrieval of in-
formation by observing the symbolic dynamic sequence encoded
in the chaotic trajectory [1] or by synchronization at the receiver
[2, 3], is limited by the channel distortions. A real life communi-
cation channel typically adds noise and other distortions like lin-
ear filtering, time varying fade and multi-path. In many wireless
communication scenarios, we can assume slow time variation of
the fades and the delays of the various paths. In this paper, we
propose methods to deal with noise and time varying fading and
multi-path which would be useful and easy to implement in the
context of communicating with chaos. In section 2 of this paper,
we describe a noise reduction method exploiting the phenomenon
of chaos synchronization [4] and illustrate the results using a nu-
merical experiment. There have been various methods proposed
for noise reduction in chaotic time-series [5, 6, 7, 8]. The proposed
method would have advantage with respect to ease of implemen-
tation and would approximate the ML estimator of the transmitted
chaotic trajectory under AWGN.

An approach to channel equalization was considered in [9],
where it was shown that one could construct an equalizer such that
the equalized signal driving the synchronizing receiver results in
a small synchronization error. Their strategy hence proposed a
separate system before the synchronizing receiver. As we show
in section 3, in the context of fading and multi-path, one can di-
rectly exploit synchronization to nullify these distortions without
the need of aseparatesystem before the synchronizing receiver.
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We find the conditions for operation of such a receiver and in sec-
tion 4, we deal with the tracking of slowly time-varying parameters
characterizing such channels.

2. NOISE REDUCTION

Let the transmitted chaotic signal be given byx(t) and the noise
added by the channel be given byn(t). Hence the received sig-
nal is given byx(t) + n(t). We will assume that the noisen(t)
is ergodic, zero mean and un-correlated with any trajectory of the
transmitter chaotic system. We would expect that thermal noise
in a telephone line for example, is uncorrelated with the trajec-
tories of the transmitter system. Let�n(t) be the estimate of the
noise generated at the receiver by some means such thaty(t) =
x(t) + n(t) + �n(t), is a trajectory of the transmitter system, not
necessarily same asx(t). Hence

Ef�n2(t)g = Ef(x(t)� y(t) + n(t))2g;

= Ef(x(t)� y(t))2g+ �2; (1)

where we use the fact thatn(t) is un-correlated withx(t) andy(t),
and�2 denotes the variance ofn(t). It follows from Eq. (1) that
�n(t) has minimum norm only ifx(t) = y(t). Due to exponen-
tial divergence, we expect thatx(t) andy(t) are typically far from
each other and un-correlated, in which caseEf(x(t) � y(t))2g
= 2Variance(x(t)). An exception would be wheny(t) = x(t��),
in which caseEf(x(t)� y(t))2g = 2(Rxx(0)�Rxx(�)), where
Rxx(:) denotes the autocorrelation function ofx(t). In both the
cases,Ef(x(t)� y(t))2g is a positive quantity. The pathological
case ofn(t) = y(t)�x(t) is ruled out because of the un-correlated
assumption of noise with any trajectory of the transmitter dynam-
ical system. Hence we want to find the nearest trajectory to the
received noisy signal. Ifn(t) is white gaussian noise, then the
nearest trajectory rule or minimum distance decoding corresponds
to maximum likelihood (ML) decoding. In what follows we sug-
gest a method exploiting chaos synchronization to find the nearest
trajectory.

We know that under no noise conditions, any trajectory passes
through the synchronizing receiver undistorted. Hence we gener-
ate �n(t) such thatx(t) + n(t) � �n(t) drives the synchronizing
receiver and lety(t) denote its output. If the input and output are
same i.e.y(t) = x(t) + n(t)� �n(t), then we may conclude that
y(t) is a trajectory of the transmitter chaotic system. The method
is illustrated in Fig. 1. To find the nearest trajectory, it follows
from Eq. (1) that�n(t) must have minimum norm. Let the avail-
able noisy time series at the receiver befx(i)+n(i)gNi=1, which is
the appropriately sampled version of the continuous time received
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Figure 1: The estimate of the noise is subtracted from the received
signal.

signal. Define the functionsTj (j = 1; � � � ; N�M+1), as follows

Tj(�n(j); �n(j + 1); � � � ; �n(j +M � 1)) =Pj�1

i=j�K
e�(i�j)(y(i) + �n(i)� x(i)� n(i))2

+
Pj+M�1

i=j
((y(i) + �n(i)� x(i)� n(i))2 + � �n2(i))

+
Pj+M+K�1

i=j+M
e�(j�i)(y(i) + �n(i)� x(i)� n(i))2;

(2)
where� is regularization parameter added to get the minimum
norm solution. We use an iterative procedure consisting of succes-
sive minimizing ”passes”, where in each pass we minimizeTj in-
crementingj from 1 toN�M+1, and we use the estimate of�n(t)
from the previous pass as the initial condition for minimization on
the current pass. In the expression forTj , Eq. (2), the first and
the last summation terms are added since the information about
a sample is also contained in the preceding and succeeding terms
and the exponential factor indicates the decay of this information.
K limits the sum when the exponential term becomes small and
varies� 1=�. We use the previously generated estimates�n(j �
K); � � � ; �n(j� 1) and�n(j+M); � � � ; �n(j+M +K� 1) for cal-
culation and minimize over the variables�n(j); � � � ; �n(j+M�1).
The state vector of the synchronizing receiver at time instanti = 1
denoted byw(1), is unknown and is used to solve for the output
of the synchronizing receiver at later instants. We estimatew(1)
in each pass by minimizing the function

G(w(1)) =

NX
i=1

(y(i)� x(i)� n(i))2: (3)

It was observed in our numerical experiments that this combination
of synchronization and adjustment of the initial state vector works
well and does not impose severe precision constraints onw(1). (In
particular, if we only adjustw(1) without using the synchroniza-
tion method, extremely high precision ofw(1) would be required
due to the exponential sensitivity of chaotic systems.) Our typical
strategy involves choosing� as initially large and then gradually
decreasing it after each pass by a scaling factor. For minimiza-
tion, we use the downhill simplex method available in numerical
recipes, requiring only function computations. The method was
applied to the continuous time Lorenz system. The Lorenz equa-
tions (variablesX, Y , Z) and the equations for the synchronizing
receiver (variablesXr(t), Yr(t), Zr(t)) are as follows [2] :

_X = �(Y �X) ; _Y = �X � Y �XZ ; _Z = XY � �Z ;

_Xr = �(Yr�Xr) ; _Yr = �X�Yr�XZr ; _Zr = XYr��Zr;

where(�; �; �) = (16:0; 45:0; 4:0). The time-series in this case
consists of the received signal sampled at0:01 units. The sampled
signal was then interpolated and used for integration to calculate
the output of the synchronizing receiver. Polynomial interpolation
of order two (quadratic) was used, where the pointX(n + �) at
a distance� 2 [0; 1] from X(n) is determined as :X(n + �) =

0 10 20 30 40 50 60 70 80
−10

−5

0

5

10

0 10 20 30 40 50 60 70 80
−10

−5

0

5

10

N
oi

se
 (

ar
b.

 u
ni

ts
)

0 10 20 30 40 50 60 70 80
−10

−5

0

5

10

Time−series

Figure 2: The estimated noise (solid line) as the number of passes
over the time-series are increased : (a) 1 pass, (b) 5 passes, (c)
15 passes. Dashed line represents the additive gaussian noise with
� = 3:69, having same the bandwidth as the transmitted chaotic
signal.
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Figure 3: The output SNR as a function of the input SNR.

0:5�(�+1)X(n+1)+ (1��2)X(n)� 0:5�(1��)X(n� 1).
We minimized the functionTj as defined by Eq. (2) when the
signal to noise ratio (SNR) of the received signal was10 dB. The
parameters�,K,M ,N were chosen as0:25, 5, 6, 80 respectively.
The parameter�was decreased by a factor of2 after each pass with
an initial value of5:0.

Figure 2 shows the actual and the estimated noise at various
stages of the minimization. As shown in Fig. 2, the estimate of
the noise�n(t) approaches the actual noisen(t) as the number of
passes are increased and� is decreased. The final value of SNR
after15 passes was20:7 dB. Figure 3 plots the input versus the out-
put SNR. Typical gain in SNR by this filtering operation is around
10 dB. The performance is limited by the interpolation inaccuracy
and a higher order interpolation would be expected to give a larger
gain in the final SNR.
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Figure 4: The allowable region for synchronization to occur in the
�1-�1 plane. The solid lines denote the boundary of the region for
L = 2 and the dashed lines forL = 3 when(�2; �2) = (0:1; 10).

3. COMBATING FADING AND MULTI-PATH

Our strategy is to use synchronization for the recovery of a chaotic
signal transmitted through a fading and multi-path channel. We
illustrate this idea by transmitting the state variableY (t) of the
Lorenz system. The model for fading and multi-path channels
where the received signalR(t) is a weighted sum of time delayed
copies of the transmitted signalY (t), is given by

R(t) =

L�1X
i=0

�iY (t� �i): (4)

The synchronizing receiver for this system is constructed as

_Xr = �(Yr �Xr) + �[R(t)�

L�1X
i=0

�i Yr(t� �i)];

_Yr = �Xr � Yr �XrZr; (5)
_Zr = XrYr � �Zr;

where the fades�i ’s and delays�i ’s are assumed to be known at
the receiver. Later we consider the case when�i and�i are time
varying and unknown at the receiver. Since a necessary condition
for synchronization is that all the conditional Lyapunov exponents
of the receiver should be negative, it is of interest to know how they
behave as a function of�i and�i. We assume�0 = 0 which can
be done by shifting the time axis of the receiver, and�0 = 1 since
the overall gain term if known, can be compensated at the receiver,
but this is not the case with the relative magnitudes. We consider
first the case ofL = 2 (i.e two paths). Figure 4 plots the allowable
region in the�1-�1 plane where the conditional Lyapunov expo-
nents are sufficiently negative, such that good synchronization is
achieved. If the least negative Lyapunov exponent is too near zero,
then there may be bubbling in the attractor due to Lyapunov expo-
nents of invariant measures embedded in the synchronized chaos
being positive [10, 11]. The region between the solid lines is the
allowable region (no bubbling) for the above case (L = 2). We
also plotted the same region forL = 3 (in the dashed line) when
(�2; �2) are kept fixed at(0:1; 10). As can be seen from the plot,
the region is smaller than the previous case whenL = 2. We com-
ment here that the region is dependent on the choice of the syn-
chronizing receiver, and it is possible that this region is larger for
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Figure 5: Tracking of the parameter�0(t).
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Figure 6: Tracking of the parameter�1(t).

some other choice of the synchronizing receiver [12]. The band-
width of the signal is� 5 (appropriate units). It is interesting to
note that chaos synchronization becomes an effective tool for sig-
nal processing in this case, extracting the signal from a mixture of
time delayed versions of the same signal. Since�i’s and�i’s are
typically modeled as random processes, one could find from Fig.
4, the probability that good synchronization is observed.

4. TRACKING OF PARAMETERS

Due to the typical occurrence of time variation of the parameters,
it is of interest to know whether they can be tracked at the receiver.
One can use simple methods to track the time varying parameters
based on the minimization of synchronization error [13]. The syn-
chronization error measurable at the receiver is given by

e(t) =

L�1X
i=0

[�i(t)Yr(t� �i(t))� ~�i Yr(t� ~�i)]:

where ~�i and ~�i are the receiver estimates of�i and�i, respec-
tively. We generate the estimates at the receiver by minimizing the
function

J( ~�i; ~�i) =

Z t+�t

t

e2(t)dt

where�t is chosen large enough such that the variance ofJ is small
when initial conditions of the synchronizing receiver are varied
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Figure 7: Tracking of the parameter�1(t).

[13]. We assume that the parameters are slowly time varying. This
is a reasonable assumption in many practical cases of interest. We
consider the case ofL = 2 and vary the parameters�0, �1 in a
sinusoidal fashion and�1 linearly. The first equation of the syn-
chronizing receiver (Eq. (5)) is replaced by

_Xr = �(Yr �Xr)

+
�

~�0(t)
(R(t)� ~�0(t)Yr(t)� ~�1(t)Y (t� ~�1(t)));

Figures 5,6,7 plot their time variation and the result of the tracking
algorithm. Since the tracking algorithm estimates the parameters
by minimization of synchronization error over a time interval, the
estimation is not exact due to continuous time variation of param-
eters. In the tracking of the time�1, the estimation goes bad twice.
These are the points where�1(t) is nearly zero and bad estimate
of �1 does not have much bearing on the synchronizing error. Also
note that,�1 was decreased at a larger rate than when it was in-
creased. As the plot shows, the error in the estimation of�1 is
larger when it is decreased, which results in a larger synchroniza-
tion error.

5. CONCLUSIONS

In conclusion, we have shown that chaos synchronization can be
used to nullify various distortions introduced by the channel. The
method allows us to generate a minimum norm noise estimate
without imposing precision constraints on the initial conditions.
In the case of fading and multi-path, one can directly use the given
signal to drive the receiver which does the inverse operation by
synchronization. The region of operation for such a receiver is
determined by the conditions under which synchronization holds.
Slow time variation can be tracked at the receiver by minimization
of measurable synchronization error.
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