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ABSTRACT

In this paper, we present nonlinear interpolation schemes for
image resolution enhancement. The Multilayer perceptron
(MLP) interpolation schemes based on the wavelet transform
and subband filtering are proposed. Because estimating each
sub-image signal is more effective than estimating the whole
image signal, pixels in the low-resolution image are used as
input signal of the MLP to estimate all of the wavelet sub-image
of the corresponding high-resolution image. The image of
increased resolution is finally produced by the synthesis
procedure of wavelet transform. As compared with other
popular methods, the results show that the improvement is
remarkable. The detail simulation results of interpolated images
and image sequences can be found in web page:
http://www.cs.ccu.edu.tw/~hyl/wmi/.

1. INTRODUCTION

Interpolation is used extensively in digital image processing to
magnify images and correct spatial distortions. Image
interpolation is used for several different purposes such as
image resolution enhancement, multi-resolution pyramidal
compressing, position computing for rotated image pixels, and
etc. In the past years, many linear and nonlinear image
interpolation techniques have been proposed. In the linear
methods, the nearest-neighbor, bilinear, cubic B-spline, and
cubic convolution interpolation methods are widely used to
increase resolution of images. Both the nearest-neighbor and
bilinear methods provide the interpolation function with a very
small computation time, but they will cause conspicuous
blocking artifacts. The cubic interpolation algorithms can
reduce the blocking effects, but it always blurred the
reconstructed image and produced some ringing effects in the
edge regions. With the rapid increase in available computing
power, the nonlinear techniques for image interpolation have
received increasing attention recently [1-3]. Because the
characteristics of the edges in a digital image can be reserved
for many scales of resolution and the edges are always
important for human vision, most of the nonlinear interpolation
algorithms tend to focus on the edge information. In these
papers, the local edge structure of the original image is
preserved to prevent the blurring and blocking effects in the
interpolated image. The proposed methods determine the edge
localization or classification by exploiting an edge fitting
technique within small overlapping windows of the original
image. We notice that the interpolation schemes utilize different
reconstruction rules that are decided by the edge pattern.
However, if the window size is larger than 3x 3 or the edges in
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a window are irregular, the implementation will become
complex and inefficient, and then the schemes will product poor
performance for image resolution enhancement. Thus, we desire
to develop simple and flexible interpolation scheme to solve the
problem.

The wavelet transform has been identified as an effective tool
for time-frequency representation of signals [4-6]. It can
decompose a digital image into some frequency sub-images,
each represented with proportional frequency resolution. The
resulting band-pass representation provides that the solution
space of many image-processing problems can be decomposed
into its lower frequency subspace and higher frequency
subspaces. In this paper, in order to reduce the complexity of
interpolation problem, we have developed an accurate method
of low implementation complexity that is well suited for
increasing resolution of images based on wavelet transform.
Multilayer perceptrons (MLPs), an important class of neural
networks (NN), have been found to be particularly effective for
problems that can make use of supervised training. The MLP is
enabled to extract higher-order statistics by adding one or more
hidden layers. This model has become extremely popular for
both classification and prediction. Many details on its
implementation and uses are given in [7-8]. In this paper, we
employ the MLP model as the predictor for both of the spatial
and frequency signals to increase resolution of image.

The rest of this paper is organized as follows. Section 2 reviews
the main features of wavelet transform and MLPs. Section 3
describes the construction of the spatial MLP interpolation
model. Further, Section 4 presents the structure of the MLP
interpolation scheme based on wavelet transform. Experimental
results are given in Section 5. Finally, conclusions are drawn in
Section 6.

2. WAVELETS AND MLP

For fast computation, the bi-orthogonal wavelet transform is
used in this work. The bi-orthogonal wavelet filters require few
tapes, unlike standard subband QMF methods. The detail
properties and construction of regular bi-orthogonal wavelet
transform are described in [4]. Furthermore, the MLP, which is
the standard neural network model, is also performed in this
paper. In general, the error back-propagation algorithm reported
in [9-10] is the most widely used and a powerful learning
algorithm for the MLP. For completeness, we review the
concepts of the bi-orthogonal wavelet analysis and the MLP
model as follows.

2.1 Bi-orthogonal Wavelet Transform

In practice, the wavelet transform is implemented with a perfect
reconstruction filter bank. The idea is to decompose the image
signals into sub-images corresponding to different frequency



contents. Let H(w) and G(®) are the low-pass and high-pass
filters of a perfect reconstruction filter bank, respectively. In
one-dimensional (1-D) case with one level decomposition, the
input signal x[#] is filtered by %[n] and g[#n]. Then, the resulted
sub-image signals are down-sampled by a factor of two. In the
two-dimensional (2-D) case, the 1-D decomposition procedure
is first applied to each row of an image signal. The
decomposition results in two intermediate sub-images. Then the
same procedure is applied to each column of the intermediate
sub-images. For a one level decomposition, this results in four
sub-images LL, LH, HL, and HH. In hierarchical wavelet
decomposition, the sub-image LL is further decomposed into
other four sub-images. Similarly, the reconstruction for the
image is done one level at a time by using the 1-D
reconstruction procedure.

2.2 Multilayer perceptron (MLP)

A MLP model contains one or more hidden layers and the
function of neurons in the hidden layer is to arbitrate between
the input and the output of neural network. The input feature
vector is fed into the source nodes in the input layer of the
neural network at first. The neurons of the input layer constitute
the input signals applied to the neurons of the hidden layer. The
output signals of the hidden layer can be used as inputs to the
next hidden layer or the output layer. Finally, the output layer
products the output results and terminates the neural computing
process.

Among the algorithms used to design the MLPs, the back-
propagation algorithm is the most popular one. There are
two different phases, the forward phase and the backward
phase in the back-propagation algorithm. In the forward phase,
the input signals are computed and passed through the neural
network layer by layer. Then, the neurons in output layer
product the output signals of the neural network. In this time,
the error signals can be generated by comparing the output
response of the neural network with the desired response. In the
backward phase of the back-propagation algorithm, some free
parameters are able to be adjusted by referring the error signals.
This work can be used to minimize the distortion of the MLP.
In this work, the back-propagation learning algorithm is
iteratively executed for the training set and then products the
synaptic weight vectors. By using the final synaptic weight
vectors into the MLP, it is used to predict the unknown pixels in
our image interpolation schemes.

3. ADAPTIVE MLP INTERPOLATION

In this section, we introduce the first new interpolation scheme,
i.e. spatial adaptive MLP interpolation scheme (SAMI), which
can be used to increase the image resolution by a factor of two
in the spatial domain. The MLP model is used to interpolate the
digital images as a nonlinear predictor. In order to preserve the
fine regions of the reconstructed image, our scheme contains a
simple classification algorithm and neural network predictors to
produce the unknown pixels and avoid the image burring effects.
At first, the Sobel operators are used to detect linear edges for a
low-resolution image, resulting in a detected edge image. The
information of the edge representation is used as the input of
overlapping window classifier. We classify a high-resolution
window into two cases based on the standard deviation O of the
low-resolution edge image window. The standard deviation is

used to determine the case for each high-resolution window by
the classification rules that described as follows.

Case 0 (Smooth region window): if 0 < 7.
Case 1 (Non-smooth region window): if 0> 7.

where 7 is the predefined threshold. Based the simple
classification algorithm, the SAMI scheme uses two MLP
modules to estimate the unknown pixels in the high-resolution
window.
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Figure 1. The input and output pixels in a window with
size 7 x 7 for SAMI scheme. The sample locations
denoted O, X, and A are the input, unknown, and output
signals, respectively.

An example of interpolation window with size 7 x 7 is shown
in Fig. 1. The MLP utilizes the known pixels within the high-
resolution image to estimate gray levels of unknown pixels.
After each high-resolution window has been processed, five
unknown pixels will be interpolated. Except the central pixel of
the overlapping windows, all of the unknown pixels in the high-
resolution image will be calculated twice. For these pixels, the
average of the two predicted gray levels is used as the final
result. Moreover, using the bilinear interpolation operator can
produce the unknown pixels located on the fringes of the high-
resolution image. In the computer simulation, the SAMI
achieves a limited success in improving the interpolation quality
of natural image. We found the reason is that the natural image
signals are nonstationary in spatial domain. There are two ways
to improve the performance of the SAMI scheme, adopting the
more accurate classification algorithm in the interpolation
scheme or turning to interpolate the low-resolution image by
using a band limited transformation. Because of the
implementation complexity must be increased heavily when the
classification algorithm becomes complex. Hence, in order to
reduce the computation time, we developed the second neural
network interpolation scheme that exploits the wavelet
transform for image resolution enhancement.

4. MLP INTERPOLATION USING
WAVELET TRANSFORM

By using the wavelet transform, the solution space of the
interpolation problem can be decomposed into its low-
frequency subspace and higher-frequency subspaces. Based on
this idea, we develop the wavelet MLP interpolation (WMI)
scheme that utilizes the property of dividing image spectrum to
augment the interpolation accuracy of the neural networks.
WMI does not use the traditional edge classification algorithm
to enhance or reserve the high-frequency portion of interpolated
image. In general, the 2-D wavelet transform splits the
nonstationary image spectrum into four more stationary sub-
images LL, LH, HL, and HH. Then, only the lowest frequency
sub-image LL is further split into four smaller sub-images. In
this paper, we consider the one level analysis/synthesis



procedure of wavelet transform for increasing the image
resolution by a factor of two.

As shown in Fig. 2, the signals in the overlapping windows of
low-resolution image is used as input vector of neural network
predictor, and then the output signal of reconstructed wavelet
sub-image LL is generated. The same structure is also employed
for the reconstruction of the higher-frequency sub-images. Also,
all of these four modules use the MLP to estimate the sub-image
signals. The final synaptic weight vectors (WL, wig wir, and
wyy) for the corresponding wavelet sub-image predictor is
generated by the back-propagation learning algorithm with the
images in training set and its sub-image signals that generated
by the wavelet analysis procedure. The MLP predictors utilize
the low-resolution image signals to estimate the signals in the
wavelet sub-images of high-resolution image. Finally, the
estimated wavelet sub-images are used to compose the
interpolated high-resolution image through the 2-D wavelet
synthesis operator. The interpolation algorithm for an M x N
low-resolution image with the desired increasing resolution
factor by Z is described as follows,

Step 1. Initially, store the evaluated final synaptic weight
vectors into the corresponding MLP predictor. Set the
width m and height » of high-resolution image; as m
—2xMandn « 2xN.Seti < 1.

Step 2. The MLP with the synaptic weight vectors w;; is used
to estimate all of the signals in the LL sub-image of
the high-resolution image. The signals in the low-
resolution image are used as the input vector of MLP.
Similarly, the LH, HL, and HH sub-images can be
produced by the corresponding sub-image MLP

predictors, respectively.

Step 3. Boundary pixels of the LL sub-image that are
incalculable for the LL sub-image predictor are stored
the gray level in low-resolution image at
corresponding position. The incalculable signals in

the estimated LH, HL, and HH sub-images are set 0.

Step 4. Use the 2-D wavelet synthesis procedure to compose
the estimated wavelet sub-images and result in an m X
n interpolated image with increasing the original

resolution by factor 2'.

IfZ/2 > 1,thenseti — i+ 1;setm « 2xmandn
~ 2 % n; go to step 2.

Step 5.

In the WMI scheme, the neural network predictors can be
adapted to the statistical properties of each wavelet sub-image,
and hence estimating each stationary sub-image signals is more
efficient than estimating the whole nonstaionary spatial signals.
The above algorithm is always practical even if the edges in
image are complex or irregular. Furthermore, the proposed
scheme supports a progressive interpolation processing. The
reconstructed high-resolution image with acceptable good
quality can be achieved by only estimating the lowest-frequency
sub-image. The fine region of the image is able to enhance by
adding one or more higher-frequency sub-image predicting.
Furthermore, the proposed algorithm can be adopted for the
subband filtering without any modification.

The MLPs are not only fast, but they also intrinsically parallel.
Moreover, when the performance of the neural network
predictor is not good enough for some images, the learning
algorithm can be reused to produce a new set of synaptic weight

vectors by adjusting the free parameters or adding some distinct
training samples into the training set. Permitting an update of
the new synaptic weight vectors can control the quality of the
reconstructed image
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Figure 2. Block diagram of the LL wavelet sub-image
reconstruction in WMI scheme.

5. SIMULATIONS RESULTS

In the simulations, we use the three-layer MLPs as nonlinear
predictors to estimate the wavelet sub-image or spatial signals
in the proposed schemes. The final synaptic weights are
generated from the training set of five different images, Boat,
Peppers, Sailboat, Tiffany, and Toys. The high-resolution still
images both inside and outside the training set are monochrome
images of size 512 x 512 with 256 gray levels. The images are
down sampled as test low-resolution images of size 256%256.
The image sequence Football (352 x 288, 30 frames) is also
used to evaluate the performance of proposed approach. To
evaluate the performance of interpolation scheme numerically,
the peak signal-to-noise ratio (PSNR) between the two images
has been calculated.

The proposed interpolation methods and other popular existing
interpolation approaches are implemented in this study. We
compare sixX interpolation methods, the 2-D bi-directional linear
interpolation (denoted by Bilinear), the cubic B-spline
interpolation (denoted by Cubic), and four proposed
interpolation schemes in the simulations. The four neural
network interpolation schemes are: (1) SAMI, (2) WMI using
only the sub-image LL without high-frequency sub-images
estimating (denoted by WMI-1), (3) WMI with complete high-
frequency sub-images estimating (denoted by WMI-2), and (4)
subband MLP interpolation (denoted by SMI) which employed
the same structure as WMI only the analysis/synthesis
procedure adopted the subband filter bank. In the SAMI, we
select the intensity threshold 7 as 10 for determining the case of
an interpolation window. The bi-orthogonal 9/7 filter proposed
in [4] is used for the WMI schemes. In the SMI, we use the
filter coefficients of the 1-D 32-tap QMF designated as 32C in

[11].

Table 1 shows the PSNR values (dB) of simulation results for
the reconstructed images with increasing resolution by factor 2
outside the training set. From the simulation results, we find
that the proposed algorithms show better quality of interpolated
images than the conventional interpolation methods. We also
compare the computation time for the interpolation schemes.



All simulations are made on a single-CPU Intel Pentium-133
personal computer with the Windows 95 operating system.
Table 2 shows the execution time for the test image Lena. The
difference between the original high-resolution image and the
interpolated images that are generated by the Cubic and WMI-
2algorithm are shown in Figs. 3(a)-(b), respectively. Fig. 4
shows the simulation results PSNR (dB) for interpolated images
of the Football sequence with increasing resolution by factor 2.
In all simulation results, the images resulted from the
interpolation with the new algorithm using wavelet transform
achieve the better image quality and the speedy computation
than those obtain with other approaches.

The more detail simulation results are can be found in the web
page: http://www.cs.ccu.edu.tw/~hyl/wmi/.

Table 1. The PSNR values (in dB) of the images with
increasing resolution outside the training set.

Bilinear Cubic SAMI WMI-1 WMI-2 SMI

Lena 35.77 3697 36.23 3739 37.89 38.02
Family 3538 3693 36.18 3734 37.76 3794
F-16 3143 33.07 34.65 3322 3345 33.34
Baboon 24.50 2534 2524 2571 25.88 25.85

Table 2. The execution time (in seconds) of the
interpolation schemes for image Lena.

Bilinear  Cubic SAMI  WMI-1
0.98 16.40 6.50 291 7.18

WMI-2 SMI
20.84

(a) (b)

Figure 3. Results of the difference between original
image and reconstructed image Lena: (a) interpolated by
Cubic, and (b) interpolated by WMI-2.
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Figure 4. The simulation results for interpolated images
of the Football sequence with increasing resolution by
factor 2.

6. CONCLUSIONS

In this paper, we proposed the efficient schemes for the digital
image interpolation. The proposed algorithms increase the
resolution of a low-resolution image by using the neural
network. The SAMI scheme contains a simple window edge
classifier which can avoid the disadvantages of using the edge-
based interpolation schemes. The WMI scheme adopts the
MLPs to predict all wavelet sub-images of high-resolution
image in order to estimate the interpolated image more
accurately. The wavelet analysis/synthesis procedure and MLP
can be implemented easily by using VLSI techniques; thus the
hardware design for the schemes is simple and efficient.
Moreover, the proposed schemes can obtain the superior image
quality and visual quality about edge region. From the
experimental results, we find that the proposed schemes are
expected to be useful interpolation schemes for natural images.
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